Keywords: MAD; standard deviation; small samples; significance test
@article{KYB_2012_48_3_a8,
author = {Klawonn, Frank},
title = {Significance tests to identify regulated proteins based on a large number of small samples},
journal = {Kybernetika},
pages = {478--493},
year = {2012},
volume = {48},
number = {3},
mrnumber = {2975802},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_3_a8/}
}
Klawonn, Frank. Significance tests to identify regulated proteins based on a large number of small samples. Kybernetika, Tome 48 (2012) no. 3, pp. 478-493. http://geodesic.mathdoc.fr/item/KYB_2012_48_3_a8/
[1] Anders, S., Huber, W.: Differential expression analysis for sequence count data. Genome Biology 11 (2010), R106. | DOI
[2] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B (Methodological) 57 (1995), 289–300. | MR | Zbl
[3] Berrar, D. P., Dubitzky, M., Granzow, M., eds.: A Practical Approach to Microarray Data Analysis. Springer, Dordecht 2009.
[4] Breitwieser, F. P., Müller, A., Dayon, L., Köcher, T., Hainard, A., Pichler, P., Schmidt-Erfurth, U., Superti-Furga, G., Sanchez, J.-C., Mechtler, K., Bennett, K. L., Colinge, J.: General statistical modeling of data from protein relative expression isobaric tags. J. Proteome Res. 10 (2011), 2758–2766. | DOI
[5] Croux, C., Rousseuw, P. J.: Alternatives to the median absolute deviation. In: Computational Statistics (Y. Dodge J. and Whittaker, eds.), Physica 1, Heidelberg 1992, pp. 411–428.
[6] Gentleman, R., Carey, V., Huber, W., Irizarry, R., Dudoit, S.: Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer, New York 2005. | MR | Zbl
[7] Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6 (1979), 65–70. | MR | Zbl
[8] Hundertmark, C., Fischer, R., Reinl, T., May, S., Klawonn, F., Jänsch, J.: MS-specific noise model reveals the potential of iTRAQ in quantitative proteomics. Bioinformatics 25 (2009), 1004–1011. | DOI
[9] Klawonn, F., Hundertmark, C., Jänsch, L.: A maximum likelihood approach to noise estimation for intensity measurements in biology. In: Proc. Sixth IEEE International Conference on Data Mining: Workshops (S. Tsumoto, C. W. Clifton, N. Zhong, X. Wu, J. Liu, B. W. Wah, and Y.-M. Cheung, eds.), IEEE, Los Alamitos 2006, pp. 180–184.
[10] Klawonn, F., Wüstefeld, T., Zender, L.: Statistical modelling for data from experiments with short hairpin RNAs. In: Advances in Intelligent Data Analysis IX, Springer, Berlin 2010, pp. 79–90.
[11] Development Core Team, R.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna 2009, http://www.R-project.org
[12] Robinson, M. D., Oshlack, A.: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11 (2010), R25. | DOI
[13] Rousseuw, P. J., Croux, C.: Alternatives to the median absolute deviation. J. Amer. Statist. Assoc. 88 (1993), 1273–1283. | DOI | MR
[14] Shaffer, J. P.: Multiple gypothesis testing. Ann. Rev. Psych. 46 (1995), 561–584. | DOI
[15] Smyth, G. K.: LIMMA: Linear models for microarray data. In: Bioinformatics and Computational Biology Solutions using R and Bioconductor (R. Gentleman, V. Carey, W. Huber, R. Irizarry, and S. Dudoit, eds.), Springer, New York 2005, pp. 397–420. | MR