Evaluating many valued modus ponens
Kybernetika, Tome 48 (2012) no. 3, pp. 465-477 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with many valued case of modus ponens. Cases with implicative and with clausal rules are studied. Many valued modus ponens via discrete connectives is studied with implicative rules as well as with clausal rules. Some properties of discrete modus ponens operator are given.
This paper deals with many valued case of modus ponens. Cases with implicative and with clausal rules are studied. Many valued modus ponens via discrete connectives is studied with implicative rules as well as with clausal rules. Some properties of discrete modus ponens operator are given.
Classification : 03E72, 68T15
Keywords: modus ponens; fuzzy logic; aggregation deficit; discrete connectives
@article{KYB_2012_48_3_a7,
     author = {Hlin\v{e}n\'a, Dana and Biba, Vladislav},
     title = {Evaluating many valued modus ponens},
     journal = {Kybernetika},
     pages = {465--477},
     year = {2012},
     volume = {48},
     number = {3},
     mrnumber = {2975801},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_3_a7/}
}
TY  - JOUR
AU  - Hliněná, Dana
AU  - Biba, Vladislav
TI  - Evaluating many valued modus ponens
JO  - Kybernetika
PY  - 2012
SP  - 465
EP  - 477
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_3_a7/
LA  - en
ID  - KYB_2012_48_3_a7
ER  - 
%0 Journal Article
%A Hliněná, Dana
%A Biba, Vladislav
%T Evaluating many valued modus ponens
%J Kybernetika
%D 2012
%P 465-477
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_3_a7/
%G en
%F KYB_2012_48_3_a7
Hliněná, Dana; Biba, Vladislav. Evaluating many valued modus ponens. Kybernetika, Tome 48 (2012) no. 3, pp. 465-477. http://geodesic.mathdoc.fr/item/KYB_2012_48_3_a7/

[1] De Baets, B.: Coimplicators, the forgotten connectives. Tatra Mt. Math. Publ. 12 (1997), 229–240. | MR | Zbl

[2] Fodor, J. C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994. | Zbl

[3] Gottwald, S.: Fuzzy Sets and Fuzzy Logic. Vieweg, Braunschweig 1993. | MR | Zbl

[4] Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Acad. Publ., Dordrecht 1999. | MR | Zbl

[5] Horváth, T., Vojtáš, P.: Induction of Fuzzy and Annotated Logic Programs. In: ILP 2006 (S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad, eds.), LNAI 4455, Springer-Verlag, Berlin – Heidelberg 2007, pp. 260–274. | MR | Zbl

[6] Kacprzyk, J., Pasi, G., Vojtáš, P., et al.: Fuzzy querying: Issues and perspectives. Kybernetika 36 (2000), 6, 605–616.

[7] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht 2000. | MR | Zbl

[8] Krajči, S., Lencses, R., Vojtáš, P.: A comparison of fuzzy and annotated logic programming. Fuzzy Sets and Systems 144 (2004), 173–192. | MR | Zbl

[9] Mesiar, R.: Generated conjunctors and related operators in MV-logic as a basis for AI applications. In: ECAI'98 Workshop W17, Brighton, pp. 1–5.

[10] Mundici, D., Olivetti, N.: Resolution and model building in the infinite valued calculus of Łukasiewicz. Theoret. Comp. Sci. 200 (1998), 335–366. | DOI | MR | Zbl

[11] Smutná, D., Vojtáš, P.: New connectives for (full)fuzzy resolution. In: Advances in Soft Computing, Physica-Verlag, Heidelberg 2000, pp. 146–151. | Zbl

[12] Smutná-Hliněná, D., Vojtáš, P.: Graded many valued resolution with aggregation. Fuzzy Sets and Systems 143 (2004), 157–168. | DOI | Zbl

[13] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, New York 1983. | MR | Zbl

[14] Šabo, M.: On many valued implications. Tatra Mt. Math. Publ. 14 (1998), 161–167. | MR | Zbl

[15] Vojtáš, P.: Fuzzy reasoning with tunable t-operators. J. Adv. Comp. Intell. 2 (1998), 121–127.