Generated fuzzy implications and fuzzy preference structures
Kybernetika, Tome 48 (2012) no. 3, pp. 453-464 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The notion of a construction of a fuzzy preference structures is introduced. The properties of a certain class of generated fuzzy implications are studied. The main topic in this paper is investigation of the construction of the monotone generator triplet $(p,i,j)$, which is the producer of fuzzy preference structures. Some properties of mentioned monotone generator triplet are investigated.
The notion of a construction of a fuzzy preference structures is introduced. The properties of a certain class of generated fuzzy implications are studied. The main topic in this paper is investigation of the construction of the monotone generator triplet $(p,i,j)$, which is the producer of fuzzy preference structures. Some properties of mentioned monotone generator triplet are investigated.
Classification : 08A72, 28E10, 60A05
Keywords: generated fuzzy implication; fuzzy preference structure; fuzzy implications; t-norm
@article{KYB_2012_48_3_a6,
     author = {Biba, Vladislav and Hlin\v{e}n\'a, Dana},
     title = {Generated fuzzy implications and fuzzy preference structures},
     journal = {Kybernetika},
     pages = {453--464},
     year = {2012},
     volume = {48},
     number = {3},
     mrnumber = {2975800},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_3_a6/}
}
TY  - JOUR
AU  - Biba, Vladislav
AU  - Hliněná, Dana
TI  - Generated fuzzy implications and fuzzy preference structures
JO  - Kybernetika
PY  - 2012
SP  - 453
EP  - 464
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_3_a6/
LA  - en
ID  - KYB_2012_48_3_a6
ER  - 
%0 Journal Article
%A Biba, Vladislav
%A Hliněná, Dana
%T Generated fuzzy implications and fuzzy preference structures
%J Kybernetika
%D 2012
%P 453-464
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_3_a6/
%G en
%F KYB_2012_48_3_a6
Biba, Vladislav; Hliněná, Dana. Generated fuzzy implications and fuzzy preference structures. Kybernetika, Tome 48 (2012) no. 3, pp. 453-464. http://geodesic.mathdoc.fr/item/KYB_2012_48_3_a6/

[1] Alsina, C.: On a family of connectives for fuzzy sets. Fuzzy Sets and Systems 16 (1985), 231–235. | DOI | MR | Zbl

[2] Baczyński, M., Jayaram, B.: Fuzzy implications (Studies in Fuzziness and Soft Computing, Vol. 231). Springer, Berlin 2008.

[3] Fodor, J. C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994. | MR | Zbl

[4] Hliněná, D., Biba, V.: Generated fuzzy implications and known classes of implications. In: Acta Universitatis Matthiae Belii ser. Mathematics. 1., Matej Bel University, Banská Bystrica 2010, pp. 25–34. | MR | Zbl

[5] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht 2000. | MR | Zbl

[6] Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Systems 15 (2007), 6, 1107–1121. | DOI

[7] Smutná, D.: On many valued conjunctions and implications. J. Electr. Engrg. 50 (1999), 10/s, 8–10.

[8] Van De Walle, B., De Baets, B., Kerre, E.: A comparative study of completeness conditions in fuzzy preference structures. In: Proc. IFSA'97, vol. III, Prague, pp. 74–79.

[9] Zadeh, L. A.: Similarity relations and fuzzy orderings. Inform. Sci. 3 (1971), 177–200. | DOI | MR | Zbl