@article{KYB_2012_48_3_a1,
author = {Starosta, \v{S}t\v{e}p\'an},
title = {Generalized {Thue-Morse} words and palindromic richness},
journal = {Kybernetika},
pages = {361--370},
year = {2012},
volume = {48},
number = {3},
mrnumber = {2975794},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_3_a1/}
}
Starosta, Štěpán. Generalized Thue-Morse words and palindromic richness. Kybernetika, Tome 48 (2012) no. 3, pp. 361-370. http://geodesic.mathdoc.fr/item/KYB_2012_48_3_a1/
[1] Allouche, J.-P., Shallit, J.: Sums of digits, overlaps, and palindromes. Discrete Math. Theoret. Comput. Sci. 4 (2000), 1–10. | MR | Zbl
[2] Baláži, P., Masáková, Z., Pelantová, E.: Factor versus palindromic complexity of uniformly recurrent infinite words. Theoret. Comput. Sci. 380 (2007), 3, 266–275. | DOI | MR | Zbl
[3] Balková, L.: Factor frequencies in generalized Thue-Morse words. Kybernetika 48 (2012), 3, 371–385.
[4] Brlek, S.: Enumeration of factors in the Thue-Morse word. Discrete Appl. Math. 24 (1989), 1–3, 83–96. | DOI | MR | Zbl
[5] Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. Internat. J. Found. Comput. 15 (2004), 2, 293–306. | DOI | MR | Zbl
[6] Bucci, M., De Luca, A., Glen, A., Zamboni, L. Q.: A connection between palindromic and factor complexity using return words. Adv. Appl. Math. 42 (2009), no. 1, 60–74. | DOI | MR | Zbl
[7] Cassaigne, J.: Complexity and special factors. Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 1, 67–88. | MR | Zbl
[8] de Luca, A., Varricchio, S.: Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups. Theoret. Comput. Sci. 63 (1989), 3, 333–348. | DOI | MR | Zbl
[9] Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255 (2001), 1–2, 539–553. | DOI | MR | Zbl
[10] Frid, A.: Applying a uniform marked morphism to a word. Discrete Math. Theoret. Comput. Sci. 3 (1999), 125–140. | MR | Zbl
[11] Glen, A., Justin, J., Widmer, S., Zamboni, L. Q.: Palindromic richness. European J. Combin. 30 (2009), 2, 510–531. | DOI | MR | Zbl
[12] Pelantová, E., Starosta, Š.: Languages invariant under more symmetries: overlapping factors versus palindromic richness. To appear in Discrete Math., preprint available at (2011). | arXiv
[13] Prouhet, E.: Mémoire sur quelques relations entre les puissances des nombres. C. R. Acad. Sci. Paris 33 (1851), 225.
[14] Starosta, Š.: On theta-palindromic richness. Theoret. Comput. Sci. 412 (2011), 12–14, 1111–1121. | DOI | MR | Zbl
[15] Tromp, J., Shallit, J.: Subword complexity of a generalized Thue-Morse word. Inf. Process. Lett. (1995), 313–316. | DOI | MR | Zbl