Max-min interval systems of linear equations with bounded solution
Kybernetika, Tome 48 (2012) no. 2, pp. 299-308 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Max-min algebra is an algebraic structure in which classical addition and multiplication are replaced by $\oplus$ and $\otimes$, where $a\oplus b=\max\{a,b\},\ a\otimes b=\min\{a,b\}$. The notation $\mathbf{A}\otimes \mathbf{x}=\mathbf{b}$ represents an interval system of linear equations, where $\mathbf{A}=[\underline{A},\overline{A}]$, $\mathbf{b}=[\underline{b},\overline{b}]$ are given interval matrix and interval vector, respectively, and a solution is from a given interval vector $\mathbf{x}=[\underline{x},\overline{x}]$. We define six types of solvability of max-min interval systems with bounded solution and give necessary and sufficient conditions for them.
Max-min algebra is an algebraic structure in which classical addition and multiplication are replaced by $\oplus$ and $\otimes$, where $a\oplus b=\max\{a,b\},\ a\otimes b=\min\{a,b\}$. The notation $\mathbf{A}\otimes \mathbf{x}=\mathbf{b}$ represents an interval system of linear equations, where $\mathbf{A}=[\underline{A},\overline{A}]$, $\mathbf{b}=[\underline{b},\overline{b}]$ are given interval matrix and interval vector, respectively, and a solution is from a given interval vector $\mathbf{x}=[\underline{x},\overline{x}]$. We define six types of solvability of max-min interval systems with bounded solution and give necessary and sufficient conditions for them.
Classification : 15A06, 65G30
Keywords: max-min algebra; interval system; T6-vector; weak T6 solvability; strong T6 solvability; T7-vector; weak T7 solvability; strong T7 solvability
@article{KYB_2012_48_2_a9,
     author = {My\v{s}kov\'a, Helena},
     title = {Max-min interval systems of linear equations with bounded solution},
     journal = {Kybernetika},
     pages = {299--308},
     year = {2012},
     volume = {48},
     number = {2},
     mrnumber = {2954328},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a9/}
}
TY  - JOUR
AU  - Myšková, Helena
TI  - Max-min interval systems of linear equations with bounded solution
JO  - Kybernetika
PY  - 2012
SP  - 299
EP  - 308
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a9/
LA  - en
ID  - KYB_2012_48_2_a9
ER  - 
%0 Journal Article
%A Myšková, Helena
%T Max-min interval systems of linear equations with bounded solution
%J Kybernetika
%D 2012
%P 299-308
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a9/
%G en
%F KYB_2012_48_2_a9
Myšková, Helena. Max-min interval systems of linear equations with bounded solution. Kybernetika, Tome 48 (2012) no. 2, pp. 299-308. http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a9/

[1] A. Asse, P. Mangin, D. Witlaeys: Assisted diagnosis using fuzzy information. In: NAFIPS 2 Congress, Schenectudy 1983.

[2] K. Cechlárová: Solutions of interval systems in max-plus algebra. In: Proc. SOR 2001 (V. Rupnik, L. Zadnik-Stirn, S. Drobne, eds.), Preddvor 2001, pp. 321-326. | MR

[3] K. Cechlárová, R. A. Cuninghame-Green: Interval systems of max-separable linear equations. Linear Algebra Appl. 340 (2002), 215-224. | MR | Zbl

[4] M. Gavalec, J. Plavka: Monotone interval eigenproblem in max-min algebra. Kybernetika 46 (2010), 3, 387-396. | MR | Zbl

[5] L. Hardouin, B. Cottenceau, M. Lhommeau, E. L. Corronc: Interval systems over idempotent semiring. Linear Algebra Appl. 431 (2009), 855-862. | MR | Zbl

[6] H. Myšková: Interval systems of max-separable linear equations. Linear Alebra. Appl. 403 (2005), 263-272. | DOI | MR | Zbl

[7] H. Myšková: Control solvability of interval systems of max-separable linear equations. Linear Algebra Appl. 416 (2006), 215-223. | MR | Zbl

[8] H. Myšková: An algorithm for testing T4 solvability of interval systems of linear equations in max-plus algebra. In: P. 28th Internat. Scientific Conference on Mathematical Methods in Economics, České Budějovice 2010, pp. 463-468.

[9] H. Myšková: The algorithm for testing solvability of max-plus interval systems. In: Proc. 28th Internat. Conference on Mathematical Methods in Economics, Jánska dolina 2011, accepted.

[10] H. Myšková: Interval solutions in max-plus algebra. In: Proc. 10th Internat. Conference APLIMAT, Bratislava 2011, pp. 143-150.

[11] A. Di Nola, S. Salvatore, W. Pedrycz, E. Sanchez: Fuzzy Relation Equations and Their Applications to Knowledge Engineering. Kluwer Academic Publishers, Dordrecht 1989. | MR | Zbl

[12] J. Rohn: Systems of interval linear equations and inequalities (rectangular case). Technical Report No. 875, Institute of Computer Science, Academy of Sciences of the Czech Republic 2002.

[13] E. Sanchez: Medical diagnosis and composite relations. In: Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, and R. R. Yager, eds.), North-Holland, Amsterdam - New York 1979, pp. 437-444. | MR

[14] T. Terano, Y. Tsukamoto: Failure diagnosis by using fuzzy logic. In: Proc. IEEE Conference on Decision Control, New Orleans 1977, pp. 1390-1395.

[15] L. A. Zadeh: Toward a theory of fuzzy systems. In: Aspects of Network and Systems Theory (R. E. Kalman and N. De Claris, eds.), Hold, Rinehart and Winston, New York 1971, pp. 209-245.