On a problem by Schweizer and Sklar
Kybernetika, Tome 48 (2012) no. 2, pp. 287-293 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a representation of the class of all $n$-dimensional copulas such that, for a fixed $m\in \mathbb N$, $2\le m n$, all their $m$-dimensional margins are equal to the independence copula. Such an investigation originated from an open problem posed by Schweizer and Sklar.
We give a representation of the class of all $n$-dimensional copulas such that, for a fixed $m\in \mathbb N$, $2\le m n$, all their $m$-dimensional margins are equal to the independence copula. Such an investigation originated from an open problem posed by Schweizer and Sklar.
Classification : 60E05, 62E10
Keywords: copulas; distributions with given marginals; Frèchet–Hoeffding bounds; partial mutual independence
@article{KYB_2012_48_2_a7,
     author = {Durante, Fabrizio},
     title = {On a problem by {Schweizer} and {Sklar}},
     journal = {Kybernetika},
     pages = {287--293},
     year = {2012},
     volume = {48},
     number = {2},
     mrnumber = {2954326},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a7/}
}
TY  - JOUR
AU  - Durante, Fabrizio
TI  - On a problem by Schweizer and Sklar
JO  - Kybernetika
PY  - 2012
SP  - 287
EP  - 293
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a7/
LA  - en
ID  - KYB_2012_48_2_a7
ER  - 
%0 Journal Article
%A Durante, Fabrizio
%T On a problem by Schweizer and Sklar
%J Kybernetika
%D 2012
%P 287-293
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a7/
%G en
%F KYB_2012_48_2_a7
Durante, Fabrizio. On a problem by Schweizer and Sklar. Kybernetika, Tome 48 (2012) no. 2, pp. 287-293. http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a7/

[1] V. Beneš, J. Štěpán, eds.: Distributions With Given Marginals and Moment Problems. Kluwer Academic Publishers, Dordrecht 1997. | MR | Zbl

[2] C. M. Cuadras, J. Fortiana, J. A. Rodriguez-Lallena, eds.: Distributions With Given Marginals and Statistical Modelling. Kluwer Academic Publishers, Dordrecht 2002. Papers from the meeting held in Barcelona 2000. | MR | Zbl

[3] G. Dall'Aglio, S. Kotz, G. Salinetti, eds.: Advances in Probability Distributions with Given Marginals. Mathematics and its Applications 67, Kluwer Academic Publishers Group, Dordrecht 1991. Beyond the Copulas, Papers from the Symposium on Distributions with Given Marginals held in Rome 1990. | MR | Zbl

[4] P. Deheuvels: Indépendance multivariée partielle et inégalités de Fréchet. In: Studies in Probability and Related Topics, Nagard, Rome 1983, pp. 145-155. | MR | Zbl

[5] F. Durante, E. P. Klement, J. J. Quesada-Molina: Bounds for trivariate copulas with given bivariate marginals. J. Inequal. Appl. 2008 (2008), 1-9. | MR | Zbl

[6] P. Jaworski, F. Durante, W. Härdle, T. Rychlik, eds.: Copula Theory and its Applications. Lecture Notes in Statistics - Proceedings 198, Springer, Berlin - Heidelberg 2010. | Zbl

[7] H. Joe: Multivariate Models and Dependence Concepts. Monographs on Statistics and Applied Probability 73, Chapman & Hall, London 1997. | MR | Zbl

[8] R. B. Nelsen: An Introduction to Copulas. Second edition. Springer Series in Statistics, Springer, New York 2006. | MR

[9] L. Rüschendorf, B. Schweizer, M. D. Taylor, eds.: Distributions with Fixed Marginals and Related Topics. Institute of Mathematical Statistics, Lecture Notes - Monograph Series 28, Hayward 1996. | MR | Zbl

[10] B. Schweizer, A. Sklar: Probabilistic Metric Spaces. North-Holland Series in Probability and Applied Mathematics. North-Holland Publishing Co., New York 1983. Reprinted, Dover, Mineola 2005. | MR | Zbl

[11] K. F. Siburg, P. A. Stoimenov: Gluing copulas. Comm. Statist. Theory Methods 37 (2008), 19, 3124-3134. | DOI | MR

[12] A. Sklar: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. | MR