Keywords: Berge's minimum theorem; moment function; discounted Markov decision process; uniqueness of the optimal policy; continuous optimal policy
@article{KYB_2012_48_2_a6,
author = {Montes-de-Oca, Ra\'ul and Lemus-Rodr{\'\i}guez, Enrique},
title = {An unbounded {Berge's} minimum theorem with applications to discounted {Markov} decision processes},
journal = {Kybernetika},
pages = {268--286},
year = {2012},
volume = {48},
number = {2},
mrnumber = {2954325},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a6/}
}
TY - JOUR AU - Montes-de-Oca, Raúl AU - Lemus-Rodríguez, Enrique TI - An unbounded Berge's minimum theorem with applications to discounted Markov decision processes JO - Kybernetika PY - 2012 SP - 268 EP - 286 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a6/ LA - en ID - KYB_2012_48_2_a6 ER -
Montes-de-Oca, Raúl; Lemus-Rodríguez, Enrique. An unbounded Berge's minimum theorem with applications to discounted Markov decision processes. Kybernetika, Tome 48 (2012) no. 2, pp. 268-286. http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a6/
[1] C. D. Aliprantis, K. C. Border: Infinite Dimensional Analysis. Third Edition. Springer-Verlag, Berlin 2006. | MR | Zbl
[2] R. B. Ash: Real Variables with Basic Metric Space Topology. IEEE Press, New York 1993. | MR | Zbl
[3] J. P. Aubin, I. Ekeland: Applied Nonlinear Analysis. John Wiley, New York 1984. | MR | Zbl
[4] L. M. Ausubel, R. J. Deneckere: A generalized theorem of the maximum. Econom. Theory 3 (1993), 99-107. | DOI | MR | Zbl
[5] C. Berge: Topological Spaces. Oliver and Boyd, Edinburgh and London 1963 (reprinted by Dover Publications, Inc., Mineola, New York 1997). | MR | Zbl
[6] D. Cruz-Suárez, R. Montes-de-Oca, F. Salem-Silva: Conditions for the uniqueness of optimal policies of discounted Markov decision processes. Math. Methods Oper. Res. 60 (2004), 415-436. | DOI | MR | Zbl
[7] J. Dugundji: Topology. Allyn and Bacon, Inc., Boston 1966. | MR | Zbl
[8] P. K. Dutta, M. K.Majumdar, R. K. Sundaram: Parametric continuity in dynamic programming problems. J. Econom. Dynam. Control 18 (1994), 1069-1092. | DOI | MR | Zbl
[9] P. K. Dutta, T. Mitra: Maximum theorems for convex structures with an application to the theory of optimal intertemporal allocations. J. Math. Econom. 18 (1989), 77-86. | DOI | MR
[10] O. Hernández-Lerma, J. B. Lasserre: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996. | MR | Zbl
[11] O. Hernández-Lerma, W. J. Runggaldier: Monotone approximations for convex stochastic control problems. J. Math. Systems Estim. Control 4 (1994), 99-140. | MR | Zbl
[12] K. Hinderer: Lipschitz continuity of value functions in Markovian decision Processes. Math. Methods Oper. Res. 60 (2005), 3-22. | MR | Zbl
[13] K. Hinderer, M. Stieglitz: Increasing and Lipschitz continuous minimizers in one-dimensional linear-convex systems without constraints: the continuous and the discrete case. Math. Methods Oper. Res. 44 (1996), 189-204. | DOI | MR | Zbl
[14] A. Horsley, A. J. Wrobel, T. Van Zandt: Berge's maximum theorem with two topologies on the action set. Econom. Lett. 61 (1998), 285-291. | DOI | MR | Zbl
[15] J. S. Jordan: The continuity of optimal dynamic decision rules. Econometrica 45 (1977), 1365-1376. | DOI | MR | Zbl
[16] T. Kamihigashi: Stochastic optimal growth with bounded or unbounded utility and with bounded or unbounded shocks. J. Math. Econom. 43 (2007), 477-500. | DOI | MR | Zbl
[17] T. Kamihigashi, S. Roy: A nonsmooth, nonconvex model of optimal growth. J. Econom. Theory 132 (2007), 435-460. | DOI | MR | Zbl
[18] R. B. King: Beyond Quartic Equation. Birkhauser, Boston 1996. | MR
[19] M. Kitayev: Semi-Markov and jump Markov control models: average cost criterion. Theory Probab. Appl. 30 (1985), 272-288. | MR
[20] D. V. Lindley: The theory of queues with a single server. Proc. Cambridge Philos. Soc. 48 (1952), 277-289. | MR | Zbl
[21] M. Majumdar, R. Radner: Stationary optimal policies with discounting in a stochastic activity analysis model. Econometrica 51 (1983), 1821-1837. | DOI | MR
[22] S. P. Meyn: Ergodic Theorems for discrete time stochastic systems using a stochastic Lyapunov functions. SIAM J. Control Optim. 27 (1989), 1409-1439. | DOI | MR
[23] E. A. Ok: Real Analysis with Economic Applications. Princeton University Press, Princeton 2007. | MR | Zbl
[24] A. L. Peressini, F. E. Sullivan, J. J. Uhl: The Mathematics of Nonlinear Programming. Springer-Verlag, New York 1988. | MR | Zbl
[25] M. L. Puterman: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley, New York 1994. | MR | Zbl
[26] U. Rieder: Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 115-131. | DOI | MR | Zbl
[27] H. L. Royden: Real Analysis. Third Edition. Macmillan, New York 1988. | MR | Zbl
[28] R. H. Stockbridge: Time-average control of martingale problems: a linear programming formulation. Ann. Probab. 18 (1990), 291-314. | MR | Zbl
[29] R. Sundaram: A First Course in Optimization Theory. Cambridge University Press, Cambridge 1996. | MR | Zbl
[30] G. Tian, J. Zhou: The maximum theorem and the existence of Nash equilibrium of (generalized) games without lower semicontinuities. J. Math. Anal. Appl. 166 (1992), 351-364. | DOI | MR | Zbl
[31] G. Tian, J. Zhou: Transfer continuities, generalizations of the Weierstrass and maximum theorem: a full characterization. J. Math. Econom. 24 (1995), 281-303. | DOI | MR
[32] M. Walker: A generalization of the maximum theorem. Internat. Econom. Rev. 20 (1979), 267-272. | DOI | MR | Zbl
[33] A. Yushkevich: Blackwell optimality in Borelian continuous-in-action Markov decision processes. SIAM J. Control Optim. 35 (1997), 2157-2182. | DOI | MR | Zbl