The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces
Kybernetika, Tome 48 (2012) no. 2, pp. 254-267 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish the Doob inequality for martingale difference arrays and provide a sufficient condition so that the strong law of large numbers would hold for an arbitrary array of random elements without imposing any geometric condition on the Banach space. Some corollaries are derived from the main results, they are more general than some well-known ones.
We establish the Doob inequality for martingale difference arrays and provide a sufficient condition so that the strong law of large numbers would hold for an arbitrary array of random elements without imposing any geometric condition on the Banach space. Some corollaries are derived from the main results, they are more general than some well-known ones.
Classification : 60B12, 60E15, 60F15, 60G42
Keywords: the Doob inequality; strong law of large numbers; martingale difference array; Banach space
@article{KYB_2012_48_2_a5,
     author = {Huan, Nguyen Van and Quang, Nguyen Van},
     title = {The {Doob} inequality and strong law of large numbers for multidimensional arrays in general {Banach} spaces},
     journal = {Kybernetika},
     pages = {254--267},
     year = {2012},
     volume = {48},
     number = {2},
     mrnumber = {2954324},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a5/}
}
TY  - JOUR
AU  - Huan, Nguyen Van
AU  - Quang, Nguyen Van
TI  - The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces
JO  - Kybernetika
PY  - 2012
SP  - 254
EP  - 267
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a5/
LA  - en
ID  - KYB_2012_48_2_a5
ER  - 
%0 Journal Article
%A Huan, Nguyen Van
%A Quang, Nguyen Van
%T The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces
%J Kybernetika
%D 2012
%P 254-267
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a5/
%G en
%F KYB_2012_48_2_a5
Huan, Nguyen Van; Quang, Nguyen Van. The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces. Kybernetika, Tome 48 (2012) no. 2, pp. 254-267. http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a5/

[1] P. Assouad: Espaces $p$-lisses et $q$-convexes, inégalités de Burkholder. Séminaire Maurey-Schwartz 1975. | MR | Zbl

[2] R. Cairoli, J. B. Walsh: Stochastic integrals in the plane. Acta Math. 134 (1975), 111-183. | DOI | MR | Zbl

[3] A. Gut: Probability: A Graduate Course. Springer, New York 2005. | MR | Zbl

[4] J. O. Howell, R. L. Taylor: Marcinkiewicz-Zygmund Weak Laws of Large Numbers for Unconditional Random Elements in Banach Spaces, Probability in Banach Spaces. Springer, Berlin - New York 1981. | MR

[5] N. V. Huan, N. V. Quang, A. Volodin: Strong laws for blockwise martingale difference arrays in Banach spaces. Lobachevskii J. Math. 31 (2010), 326-335. | DOI | MR

[6] H. C. Kim: The Hájek-Rényi inequality for weighted sums of negatively orthant dependent random variables. Internat. J. Contemporary Math. Sci. 1 (2006), 297-303. | MR

[7] Z. A. Lagodowski: Strong laws of large numbers for $\mathbb B$-valued random fields. Discrete Dynamics in Nature and Society (2009). | MR

[8] F. Móricz: Strong limit theorems for quasi-orthogonal random fields. J. Multivariate Anal. 30 (1989), 255-278. | DOI | MR | Zbl

[9] F. Móricz, U. Stadtmüller, M. Thalmaier: Strong laws for blockwise $\mathcal M$-dependent random fields. J. Theoret. Probab. 21 (2008), 660-671. | DOI | MR

[10] F. Móricz, K. L. Su, R. L. Taylor: Strong laws of large numbers for arrays of orthogonal random elements in Banach spaces. Acta Math. Hungar. 65 (1994), 1-16. | DOI | MR | Zbl

[11] C. Noszály, T. Tómács: A general approach to strong laws of large numbers for fields of random variables. Ann. Univ. Sci. Budapest. Sect. Math. 43 (2001), 61-78. | MR | Zbl

[12] N. V. Quang, N. V. Huan: On the strong law of large numbers and $\mathcal L_p$-convergence for double arrays of random elements in $p$-uniformly smooth Banach spaces. Stat. Probab. Lett. 79 (2009), 1891-1899. | DOI | MR

[13] N. V. Quang, N. V. Huan: A characterization of $p$-uniformly smooth Banach spaces and weak laws of large numbers for $d$-dimensional adapted arrays. Sankhyā 72 (2010), 344-358. | DOI | MR | Zbl

[14] N. V. Quang, N. V. Huan: A Hájek-Rényi type maximal inequality and strong laws of large numbers for multidimensional arrays. J. Inequalities Appl. 2010. | MR | Zbl

[15] A. Rosalsky, L. V. Thanh: On almost sure and mean convergence of normed double sums of Banach space valued random elements. Stochastic Analysis and Applications 25 (2007), 895-911. | DOI | MR | Zbl

[16] A. Rosalsky, L. V. Thanh: On the strong law of large numbers for sequences of blockwise independent and blockwise $p$-orthoganal random element in rademacher type $p$ banach spaces. Probab. Math. Statist. 27 (2007), 205-222. | MR

[17] Q. M. Shao: A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab. 13 (2000), 343-356. | DOI | MR | Zbl

[18] R. T. Smythe: Strong laws of large numbers for $r$-dimensional arrays of random variables. Ann. Probab. 1 (1973), 164-170. | DOI | MR | Zbl

[19] L. V. Thanh: On the strong law of large numbers for $d$-dimensional arrays of random variables. Electron. Comm. Probab. 12 (2007), 434-441. | MR | Zbl

[20] W. A. Woyczyński: On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence. Probab. Math. Statist. 1 (1981), 117-131. | MR | Zbl

[21] W. A. Woyczyński: Asymptotic Behavior of Martingales in Banach Spaces, Martingale Theory in Harmonic Analysis and Banach Spaces. Springer, Berlin - New York 1982. | MR