Keywords: the Doob inequality; strong law of large numbers; martingale difference array; Banach space
@article{KYB_2012_48_2_a5,
author = {Huan, Nguyen Van and Quang, Nguyen Van},
title = {The {Doob} inequality and strong law of large numbers for multidimensional arrays in general {Banach} spaces},
journal = {Kybernetika},
pages = {254--267},
year = {2012},
volume = {48},
number = {2},
mrnumber = {2954324},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a5/}
}
TY - JOUR AU - Huan, Nguyen Van AU - Quang, Nguyen Van TI - The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces JO - Kybernetika PY - 2012 SP - 254 EP - 267 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a5/ LA - en ID - KYB_2012_48_2_a5 ER -
Huan, Nguyen Van; Quang, Nguyen Van. The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces. Kybernetika, Tome 48 (2012) no. 2, pp. 254-267. http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a5/
[1] P. Assouad: Espaces $p$-lisses et $q$-convexes, inégalités de Burkholder. Séminaire Maurey-Schwartz 1975. | MR | Zbl
[2] R. Cairoli, J. B. Walsh: Stochastic integrals in the plane. Acta Math. 134 (1975), 111-183. | DOI | MR | Zbl
[3] A. Gut: Probability: A Graduate Course. Springer, New York 2005. | MR | Zbl
[4] J. O. Howell, R. L. Taylor: Marcinkiewicz-Zygmund Weak Laws of Large Numbers for Unconditional Random Elements in Banach Spaces, Probability in Banach Spaces. Springer, Berlin - New York 1981. | MR
[5] N. V. Huan, N. V. Quang, A. Volodin: Strong laws for blockwise martingale difference arrays in Banach spaces. Lobachevskii J. Math. 31 (2010), 326-335. | DOI | MR
[6] H. C. Kim: The Hájek-Rényi inequality for weighted sums of negatively orthant dependent random variables. Internat. J. Contemporary Math. Sci. 1 (2006), 297-303. | MR
[7] Z. A. Lagodowski: Strong laws of large numbers for $\mathbb B$-valued random fields. Discrete Dynamics in Nature and Society (2009). | MR
[8] F. Móricz: Strong limit theorems for quasi-orthogonal random fields. J. Multivariate Anal. 30 (1989), 255-278. | DOI | MR | Zbl
[9] F. Móricz, U. Stadtmüller, M. Thalmaier: Strong laws for blockwise $\mathcal M$-dependent random fields. J. Theoret. Probab. 21 (2008), 660-671. | DOI | MR
[10] F. Móricz, K. L. Su, R. L. Taylor: Strong laws of large numbers for arrays of orthogonal random elements in Banach spaces. Acta Math. Hungar. 65 (1994), 1-16. | DOI | MR | Zbl
[11] C. Noszály, T. Tómács: A general approach to strong laws of large numbers for fields of random variables. Ann. Univ. Sci. Budapest. Sect. Math. 43 (2001), 61-78. | MR | Zbl
[12] N. V. Quang, N. V. Huan: On the strong law of large numbers and $\mathcal L_p$-convergence for double arrays of random elements in $p$-uniformly smooth Banach spaces. Stat. Probab. Lett. 79 (2009), 1891-1899. | DOI | MR
[13] N. V. Quang, N. V. Huan: A characterization of $p$-uniformly smooth Banach spaces and weak laws of large numbers for $d$-dimensional adapted arrays. Sankhyā 72 (2010), 344-358. | DOI | MR | Zbl
[14] N. V. Quang, N. V. Huan: A Hájek-Rényi type maximal inequality and strong laws of large numbers for multidimensional arrays. J. Inequalities Appl. 2010. | MR | Zbl
[15] A. Rosalsky, L. V. Thanh: On almost sure and mean convergence of normed double sums of Banach space valued random elements. Stochastic Analysis and Applications 25 (2007), 895-911. | DOI | MR | Zbl
[16] A. Rosalsky, L. V. Thanh: On the strong law of large numbers for sequences of blockwise independent and blockwise $p$-orthoganal random element in rademacher type $p$ banach spaces. Probab. Math. Statist. 27 (2007), 205-222. | MR
[17] Q. M. Shao: A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab. 13 (2000), 343-356. | DOI | MR | Zbl
[18] R. T. Smythe: Strong laws of large numbers for $r$-dimensional arrays of random variables. Ann. Probab. 1 (1973), 164-170. | DOI | MR | Zbl
[19] L. V. Thanh: On the strong law of large numbers for $d$-dimensional arrays of random variables. Electron. Comm. Probab. 12 (2007), 434-441. | MR | Zbl
[20] W. A. Woyczyński: On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence. Probab. Math. Statist. 1 (1981), 117-131. | MR | Zbl
[21] W. A. Woyczyński: Asymptotic Behavior of Martingales in Banach Spaces, Martingale Theory in Harmonic Analysis and Banach Spaces. Springer, Berlin - New York 1982. | MR