Keywords: Rènyi $\alpha $-entropy; non-extensive entropy of degree $\alpha $; error probability; Bayesian problems; functional convexity
@article{KYB_2012_48_2_a4,
author = {Rastegin, Alexey},
title = {Convexity inequalities for estimating generalized conditional entropies from below},
journal = {Kybernetika},
pages = {242--253},
year = {2012},
volume = {48},
number = {2},
mrnumber = {2954323},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a4/}
}
Rastegin, Alexey. Convexity inequalities for estimating generalized conditional entropies from below. Kybernetika, Tome 48 (2012) no. 2, pp. 242-253. http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a4/
[1] L. Baladová: Minimum of average conditional entropy for given minimum probability of error. Kybernetika 2 (1966), 416-422. | MR | Zbl
[2] T. Cover, J. Thomas: Elements of Information Theory. John Wiley & Sons, New York 1991. | MR | Zbl
[3] I. Csiszár: Axiomatic characterizations of information measures. Entropy 10 (2008), 261-273. | DOI | Zbl
[4] Z. Daróczy: Generalized information functions. Inform. and Control 16 (1970), 36-51. | DOI | MR | Zbl
[5] M. H. DeGroot: Optimal Statistical Decisions. McGraw-Hill, New York 1970. | MR | Zbl
[6] D. Erdogmus, J. C. Principe: Lower and upper bounds for misclassification probability based on Rényi's information. J. VLSI Signal Process. 37 (2004), 305-317. | DOI | Zbl
[7] R. M. Fano: Transmission of Information: A Statistical Theory of Communications. MIT Press and John Wiley & Sons, New York 1961. | MR | Zbl
[8] M. Feder, N. Merhav: Relations between entropy and error probability. IEEE Trans. Inform. Theory 40 (1994), 259-266. | DOI | Zbl
[9] S. Furuichi: Information theoretical properties of Tsallis entropies. J. Math. Phys. 47 (2006), 023302. | DOI | MR | Zbl
[10] M. Gell-Mann, C. Tsallis, eds.: Nonextensive Entropy - Interdisciplinary Applications. Oxford University Press, Oxford 2004. | MR | Zbl
[11] G. H. Hardy, J. E. Littlewood, G. Polya: Inequalities. Cambridge University Press, London 1934. | Zbl
[12] J. Havrda, F. Charvát: Quantification methods of classification processes: concept of structural $\alpha$-entropy. Kybernetika 3 (1967), 30-35. | MR
[13] P. Jizba, T. Arimitsu: The world according to Rényi: thermodynamics of multifractal systems. Ann. Phys. 312 (2004), 17-59. | DOI | MR | Zbl
[14] R. Kamimura: Minimizing $\alpha$-information for generalization and interpretation. Algorithmica 22 (1998), 173-197. | DOI | MR | Zbl
[15] A. Novikov: Optimal sequential procedures with Bayes decision rules. Kybernetika 46 (2010), 754-770. | MR | Zbl
[16] A. Perez: Information-theoretic risk estimates in statistical decision. Kybernetika 3 (1967), 1-21. | MR | Zbl
[17] A. E. Rastegin: Rényi formulation of the entropic uncertainty principle for POVMs. J. Phys. A: Math. Theor. 43 (2010), 155302. | DOI | MR | Zbl
[18] A. E. Rastegin: Entropic uncertainty relations for extremal unravelings of super-operators. J. Phys. A: Math. Theor. 44 (2011), 095303. | DOI | MR | Zbl
[19] A. E. Rastegin: Continuity estimates on the Tsallis relative entropy. E-print arXiv:1102.5154v2 [math-ph] (2011). | MR
[20] A. E. Rastegin: Fano type quantum inequalities in terms of $q$-entropies. Quantum Information Processing (2011), doi 10.1007/s11128-011-0347-6.
[21] A. Rényi: On measures of entropy and information. In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley - Los Angeles 1961, pp. 547-561. | MR | Zbl
[22] A. Rényi: On the amount of missing information in a random variable concerning an event. J. Math. Sci. 1 (1966), 30-33. | MR
[23] A. Rényi: Statistics and information theory. Stud. Sci. Math. Hung. 2 (1967), 249-256. | MR | Zbl
[24] A. Rényi: On some basic problems of statistics from the point of view of information theory. In: Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley - Los Angeles 1967, pp. 531-543. | MR | Zbl
[25] B. Schumacher: Sending entanglement through noisy quantum channels. Phys. Rev. A 54 (1996), 2614-2628. | DOI
[26] C. Tsallis: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52 (1988), 479-487. | DOI | MR | Zbl
[27] I. Vajda: On the statistical decision problem with discrete paprameter space. Kybernetika 3 (1967), 110-126. | MR
[28] I. Vajda: Bounds of the minimal error probability on checking a finite or countable number of hypotheses. Problemy Peredachii Informacii 4 (1968), 9-19 (in Russian); translated as Problems of Information Transmission 4 (1968), 6-14. | MR
[29] K. Życzkowski: Rényi extrapolation of Shannon entropy. Open Sys. Inform. Dyn. 10 (2003), 297-310; corrigendum in the e-print version arXiv:quant-ph/0305062v2. | MR | Zbl