Keywords: underactuated systems; nonlinear control; mechanical systems
@article{KYB_2012_48_2_a3,
author = {Neusser, Zden\v{e}k and Val\'a\v{s}ek, Michael},
title = {Control of the underactuated mechanical systems using natural motion},
journal = {Kybernetika},
pages = {223--241},
year = {2012},
volume = {48},
number = {2},
mrnumber = {2954322},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a3/}
}
Neusser, Zdeněk; Valášek, Michael. Control of the underactuated mechanical systems using natural motion. Kybernetika, Tome 48 (2012) no. 2, pp. 223-241. http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a3/
[1] N. P. I. Aneke: Control of Underactuated Mechanical Systems. Ph.D. Thesis. Technische Universiteit Eindhoven, Eindhoven 2002.
[2] I. Fantoni, R. Lozano: Non-linear Control for Underactuated Mechanical Systems. Springer-Verlag, London 2002.
[3] A. D. Mahindrakar, S. Rao, R. N. Banavar: A Point-to-point control of a 2R planar horizontal underactuated manipulator. Mechanism and Machine Theory 41 (2006), 838-844. | DOI | MR
[4] R. Olfati-Saber: Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles. Ph.D. Thesis. Massachusetts Institute of Technology, Boston 2001.
[5] J. Rubí, Á. Rubio, A. Avello: Swing-up control problem for a self-erecting double inverted pendulum. IEE Proc. - Control Theory App. 149 (2002), 2, 169-175.
[6] P. Steinbauer: Nonlinear Control of the Nonlinear Mechanical Systems. Ph.D. Thesis. Czech Technical University in Prague, Prague 2002. (in Czech)
[7] L. Udawatta, K. Watanabe, K. Izumi, K. Kuguchi: Control of underactuated robot manipulators using switching computed torque method: GA based approach. Soft Computing 8 (2003), 51-60. | DOI
[8] M. Valášek: Control of elastic industrial robots by nonlinear dynamic compensation. Acta Polytechnica 33 (1993), 1, 15-30.
[9] M. Valášek: Design and control of under-actuated and over-actuated mechanical systems - Challenges of mechanics and mechatronics. Supplement to Vehicle System Dynamics 40 (2004), 37-50.
[10] M. Valášek: Exact input-output linearization of general multibody system by dynamic feedback. In: Multibody Dynamics 2005, Eccomas Conference, Madrid 2005.
[11] M. Valášek, P. Steinbauer: Nonlinear control of multibody systems. In: Euromech Colloquium 404, Advances in Computational Multibody Dynamics, Lisboa: Instituto Suparior Technico Av. Rovisco Pais, 1999, 437-444.