Keywords: Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector
@article{KYB_2012_48_2_a10,
author = {Rashid, Imran and Gavalec, Martin and Sergeev, Serge\u{i}},
title = {Eigenspace of a three-dimensional {max-{\L}ukasiewicz} fuzzy matrix},
journal = {Kybernetika},
pages = {309--328},
year = {2012},
volume = {48},
number = {2},
mrnumber = {2954329},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a10/}
}
Rashid, Imran; Gavalec, Martin; Sergeev, Sergeĭ. Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix. Kybernetika, Tome 48 (2012) no. 2, pp. 309-328. http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a10/
[1] K. Cechlárová: Eigenvectors in bottleneck algebra. Lin. Algebra Appl. 175 (1992), 63-73. | DOI | MR | Zbl
[2] K. Cechlárová: Efficient computation of the greatest eigenvector in fuzzy algebra. Tatra Mt. Math. Publ. 12 (1997), 73-79. | MR | Zbl
[3] G. Cohen, D. Dubois, J. P. Quadrat, M. Viot: A linerar-system-theoretic view of discrete event processes and its use for performance evaluation in manufacturing. IEE Trans. Automat. Control AC-30 (1985), 210-220. | DOI | MR
[4] R. A. Cuninghame-Green: Describing industrial processes with interference and approximating their steady-state behavior. Oper. Res. Quart. 13 (1962), 95-100. | DOI
[5] R. A. Cuninghame-Green: Minimax Algebra. Lect. Notes in Econom. and Math. Systems 166, Springer-Verlag, Berlin 1979. | MR | Zbl
[6] R. A. Cuninghame-Green: Minimax Algebra and Application. In: Advances in Imaging and Electron Physics 90, (P. W. Hawkes, ed.), Academic Press, New York 1995.
[7] M. Gavalec: Monotone eigenspace structure in max-min algebra. Lin. Algebra Appl. 345 (2002), 149-167. | DOI | MR | Zbl
[8] M. Gavalec, I. Rashid: Monotone eigenspace structure of a max-drast fuzzy matrix. In: Proc. 28th Internat. Conf. Mathematical Methods in Economics, University of South Bohemia, České Budějovice 2010, pp. 162-167.
[9] M. Gavalec, I. Rashid, S. Sergeev: Monotone eigenspace structure of a max-prod fuzzy matrix. In preparation.
[10] M. Gondran: Valeurs propres et vecteurs propres en classification hiérarchique. RAIRO Informatique Théorique 10 (1976), 39-46. | MR
[11] M. Gondran, M. Minoux: Eigenvalues and eigenvectors in semimodules and their interpretation in graph theory. In: Proc. 9th Prog. Symp. 1976, pp. 133-148. | Zbl
[12] M. Gondran, M. Minoux: Valeurs propres et vecteurs propres en théorie des graphes. Colloq. Internat. CNRS (1978), 181-183.
[13] G. Olsder: Eigenvalues of dynamic max-min systems. In: Discrete Events Dynamic Systems 1, Kluwer Academic Publishers 1991, pp. 177-201. | Zbl
[14] E. Sanchez: Resolution of eigen fuzzy sets equations. Fuzzy Sets and Systems 1 (1978), 69-74. | DOI | MR | Zbl
[15] Yi-Jia Tan: Eigenvalues and eigenvectors for matrices over distributive lattices. Lin. Algebra Appl. 283 (1998), 257-272. | DOI | MR
[16] Yi-Jia Tan: On the powers of matrices over a distributive lattice. Lin. Algebra Appl. 336 (2001), 1-14. | DOI | MR
[17] U. Zimmermann: Linear and Combinatorial Optimization in Ordered Algebraic Structure. Ann. Discrete Math. 10, North Holland, Amsterdam 1981. | MR