Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix
Kybernetika, Tome 48 (2012) no. 2, pp. 309-328 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events system, characterized by a given transition matrix and fuzzy state vectors. Description of the eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix in max-Łukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and the structure of the increasing eigenspace is described. Complete characterization of the general eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and column permutations of the matrix, is presented in Sections 4 and 5, with numerical examples in Section 6.
Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events system, characterized by a given transition matrix and fuzzy state vectors. Description of the eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix in max-Łukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and the structure of the increasing eigenspace is described. Complete characterization of the general eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and column permutations of the matrix, is presented in Sections 4 and 5, with numerical examples in Section 6.
Classification : 62A10, 93E12
Keywords: Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector
@article{KYB_2012_48_2_a10,
     author = {Rashid, Imran and Gavalec, Martin and Sergeev, Serge\u{i}},
     title = {Eigenspace of a three-dimensional {max-{\L}ukasiewicz} fuzzy matrix},
     journal = {Kybernetika},
     pages = {309--328},
     year = {2012},
     volume = {48},
     number = {2},
     mrnumber = {2954329},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a10/}
}
TY  - JOUR
AU  - Rashid, Imran
AU  - Gavalec, Martin
AU  - Sergeev, Sergeĭ
TI  - Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix
JO  - Kybernetika
PY  - 2012
SP  - 309
EP  - 328
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a10/
LA  - en
ID  - KYB_2012_48_2_a10
ER  - 
%0 Journal Article
%A Rashid, Imran
%A Gavalec, Martin
%A Sergeev, Sergeĭ
%T Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix
%J Kybernetika
%D 2012
%P 309-328
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a10/
%G en
%F KYB_2012_48_2_a10
Rashid, Imran; Gavalec, Martin; Sergeev, Sergeĭ. Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix. Kybernetika, Tome 48 (2012) no. 2, pp. 309-328. http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a10/

[1] K. Cechlárová: Eigenvectors in bottleneck algebra. Lin. Algebra Appl. 175 (1992), 63-73. | DOI | MR | Zbl

[2] K. Cechlárová: Efficient computation of the greatest eigenvector in fuzzy algebra. Tatra Mt. Math. Publ. 12 (1997), 73-79. | MR | Zbl

[3] G. Cohen, D. Dubois, J. P. Quadrat, M. Viot: A linerar-system-theoretic view of discrete event processes and its use for performance evaluation in manufacturing. IEE Trans. Automat. Control AC-30 (1985), 210-220. | DOI | MR

[4] R. A. Cuninghame-Green: Describing industrial processes with interference and approximating their steady-state behavior. Oper. Res. Quart. 13 (1962), 95-100. | DOI

[5] R. A. Cuninghame-Green: Minimax Algebra. Lect. Notes in Econom. and Math. Systems 166, Springer-Verlag, Berlin 1979. | MR | Zbl

[6] R. A. Cuninghame-Green: Minimax Algebra and Application. In: Advances in Imaging and Electron Physics 90, (P. W. Hawkes, ed.), Academic Press, New York 1995.

[7] M. Gavalec: Monotone eigenspace structure in max-min algebra. Lin. Algebra Appl. 345 (2002), 149-167. | DOI | MR | Zbl

[8] M. Gavalec, I. Rashid: Monotone eigenspace structure of a max-drast fuzzy matrix. In: Proc. 28th Internat. Conf. Mathematical Methods in Economics, University of South Bohemia, České Budějovice 2010, pp. 162-167.

[9] M. Gavalec, I. Rashid, S. Sergeev: Monotone eigenspace structure of a max-prod fuzzy matrix. In preparation.

[10] M. Gondran: Valeurs propres et vecteurs propres en classification hiérarchique. RAIRO Informatique Théorique 10 (1976), 39-46. | MR

[11] M. Gondran, M. Minoux: Eigenvalues and eigenvectors in semimodules and their interpretation in graph theory. In: Proc. 9th Prog. Symp. 1976, pp. 133-148. | Zbl

[12] M. Gondran, M. Minoux: Valeurs propres et vecteurs propres en théorie des graphes. Colloq. Internat. CNRS (1978), 181-183.

[13] G. Olsder: Eigenvalues of dynamic max-min systems. In: Discrete Events Dynamic Systems 1, Kluwer Academic Publishers 1991, pp. 177-201. | Zbl

[14] E. Sanchez: Resolution of eigen fuzzy sets equations. Fuzzy Sets and Systems 1 (1978), 69-74. | DOI | MR | Zbl

[15] Yi-Jia Tan: Eigenvalues and eigenvectors for matrices over distributive lattices. Lin. Algebra Appl. 283 (1998), 257-272. | DOI | MR

[16] Yi-Jia Tan: On the powers of matrices over a distributive lattice. Lin. Algebra Appl. 336 (2001), 1-14. | DOI | MR

[17] U. Zimmermann: Linear and Combinatorial Optimization in Ordered Algebraic Structure. Ann. Discrete Math. 10, North Holland, Amsterdam 1981. | MR