@article{KYB_2012_48_2_a0,
author = {Damak, Hanen and Hammami, Mohamed Ali and Sun, Yeong-Jeu},
title = {The existence of limit cycle for perturbed bilinear systems},
journal = {Kybernetika},
pages = {177--189},
year = {2012},
volume = {48},
number = {2},
mrnumber = {2954318},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a0/}
}
Damak, Hanen; Hammami, Mohamed Ali; Sun, Yeong-Jeu. The existence of limit cycle for perturbed bilinear systems. Kybernetika, Tome 48 (2012) no. 2, pp. 177-189. http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a0/
[1] T. M. Apostol: Mathematical Analysis. Addison-Wesley, 1957. | MR | Zbl
[2] L. Iannelli, K. H. Johansson, U. Jonsson, F. Vasca: Dither for smoothing relay feedback systems. IEEE Trans. Circuits and Systems, Part I 50 (2003), 8, 1025-1035. | DOI | MR
[3] H. K. Khalil: Nonlinear Systems. Prentice-Hall, New York 2002. | Zbl
[4] A. I. Mees: Limit cycles stability. IMA J. Appl. Math. 11 (1972), 3, 281-295. | MR
[5] R. Miller, A. Michel, G. S. Krenz: On the stability of limit cycles in nonlinear feedback systems: analysis using describing functions. IEEE Trans. Circuits and Systems 30 (1983), 9, 684-696. | DOI | MR | Zbl
[6] Y. Sun: Limit cycles design for a class of bilinear control systems. Chaos, Solitons and Fractals 33 (2007), 156-162. | DOI | MR | Zbl
[7] Y. Sun: Existence and uniqueness of limit cycle for a class of nonlinear discrete-time systems. Chaos, Solitons and Fractals 38 (2008), 89-96. | DOI | MR | Zbl
[8] Y. Sun: The existence of the exponentially stable limit cycle for a class of nonlinear systems. Chaos, Solitons and Fractals 39 (2009), 2357-2362. | DOI | Zbl