The existence of limit cycle for perturbed bilinear systems
Kybernetika, Tome 48 (2012) no. 2, pp. 177-189 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the feedback control for a class of bilinear control systems with a small parameter is proposed to guarantee the existence of limit cycle. We use the perturbation method of seeking in approximate solution as a finite Taylor expansion of the exact solution. This perturbation method is to exploit the “smallness” of the perturbation parameter $\varepsilon$ to construct an approximate periodic solution. Furthermore, some simulation results are given to illustrate the existence of a limit cycle for this class of nonlinear control systems.
In this paper, the feedback control for a class of bilinear control systems with a small parameter is proposed to guarantee the existence of limit cycle. We use the perturbation method of seeking in approximate solution as a finite Taylor expansion of the exact solution. This perturbation method is to exploit the “smallness” of the perturbation parameter $\varepsilon$ to construct an approximate periodic solution. Furthermore, some simulation results are given to illustrate the existence of a limit cycle for this class of nonlinear control systems.
Classification : 37G15, 70K05
Keywords: perturbed bilinear system; feedback control; limit cycle
@article{KYB_2012_48_2_a0,
     author = {Damak, Hanen and Hammami, Mohamed Ali and Sun, Yeong-Jeu},
     title = {The existence of limit cycle for perturbed bilinear systems},
     journal = {Kybernetika},
     pages = {177--189},
     year = {2012},
     volume = {48},
     number = {2},
     mrnumber = {2954318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a0/}
}
TY  - JOUR
AU  - Damak, Hanen
AU  - Hammami, Mohamed Ali
AU  - Sun, Yeong-Jeu
TI  - The existence of limit cycle for perturbed bilinear systems
JO  - Kybernetika
PY  - 2012
SP  - 177
EP  - 189
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a0/
LA  - en
ID  - KYB_2012_48_2_a0
ER  - 
%0 Journal Article
%A Damak, Hanen
%A Hammami, Mohamed Ali
%A Sun, Yeong-Jeu
%T The existence of limit cycle for perturbed bilinear systems
%J Kybernetika
%D 2012
%P 177-189
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a0/
%G en
%F KYB_2012_48_2_a0
Damak, Hanen; Hammami, Mohamed Ali; Sun, Yeong-Jeu. The existence of limit cycle for perturbed bilinear systems. Kybernetika, Tome 48 (2012) no. 2, pp. 177-189. http://geodesic.mathdoc.fr/item/KYB_2012_48_2_a0/

[1] T. M. Apostol: Mathematical Analysis. Addison-Wesley, 1957. | MR | Zbl

[2] L. Iannelli, K. H. Johansson, U. Jonsson, F. Vasca: Dither for smoothing relay feedback systems. IEEE Trans. Circuits and Systems, Part I 50 (2003), 8, 1025-1035. | DOI | MR

[3] H. K. Khalil: Nonlinear Systems. Prentice-Hall, New York 2002. | Zbl

[4] A. I. Mees: Limit cycles stability. IMA J. Appl. Math. 11 (1972), 3, 281-295. | MR

[5] R. Miller, A. Michel, G. S. Krenz: On the stability of limit cycles in nonlinear feedback systems: analysis using describing functions. IEEE Trans. Circuits and Systems 30 (1983), 9, 684-696. | DOI | MR | Zbl

[6] Y. Sun: Limit cycles design for a class of bilinear control systems. Chaos, Solitons and Fractals 33 (2007), 156-162. | DOI | MR | Zbl

[7] Y. Sun: Existence and uniqueness of limit cycle for a class of nonlinear discrete-time systems. Chaos, Solitons and Fractals 38 (2008), 89-96. | DOI | MR | Zbl

[8] Y. Sun: The existence of the exponentially stable limit cycle for a class of nonlinear systems. Chaos, Solitons and Fractals 39 (2009), 2357-2362. | DOI | Zbl