On the $L$-valued categories of $L$-$E$-ordered sets
Kybernetika, Tome 48 (2012) no. 1, pp. 144-164 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to construct an $L$-valued category whose objects are $L$-$E$-ordered sets. To reach the goal, first, we construct a category whose objects are $L$-$E$-ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category we define the degree to which each morphism is an order-preserving mapping and as a result we obtain an $L$-valued category. Further we investigate the properties of this category, namely, we observe some special objects, special morphisms and special constructions.
The aim of this paper is to construct an $L$-valued category whose objects are $L$-$E$-ordered sets. To reach the goal, first, we construct a category whose objects are $L$-$E$-ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category we define the degree to which each morphism is an order-preserving mapping and as a result we obtain an $L$-valued category. Further we investigate the properties of this category, namely, we observe some special objects, special morphisms and special constructions.
Classification : 03E72, 18A05, 18B35
Keywords: category; $L$-valued category; fuzzy order relation
@article{KYB_2012_48_1_a8,
     author = {Grigorenko, Olga},
     title = {On the $L$-valued categories of $L$-$E$-ordered sets},
     journal = {Kybernetika},
     pages = {144--164},
     year = {2012},
     volume = {48},
     number = {1},
     mrnumber = {2932933},
     zbl = {1251.03062},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a8/}
}
TY  - JOUR
AU  - Grigorenko, Olga
TI  - On the $L$-valued categories of $L$-$E$-ordered sets
JO  - Kybernetika
PY  - 2012
SP  - 144
EP  - 164
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a8/
LA  - en
ID  - KYB_2012_48_1_a8
ER  - 
%0 Journal Article
%A Grigorenko, Olga
%T On the $L$-valued categories of $L$-$E$-ordered sets
%J Kybernetika
%D 2012
%P 144-164
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a8/
%G en
%F KYB_2012_48_1_a8
Grigorenko, Olga. On the $L$-valued categories of $L$-$E$-ordered sets. Kybernetika, Tome 48 (2012) no. 1, pp. 144-164. http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a8/

[1] J. Adamek, H. Herrlich, G. E. Strecker: Abstract and concrete categories: The joy of cats. Reprints in Theory and Applications of Categories, No. 17 2006. | MR | Zbl

[2] R. Bělohlávek: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Press, New York 2002. | Zbl

[3] U. Bodenhofer: A similarity-based generalization of fuzzy orderings preserving the classical axioms. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 8(5) (2000), 593-610. | DOI | MR | Zbl

[4] U. Bodenhofer: Representations and constructions of similarity-based fuzzy orderings. Fuzzy Sets and Systems 137 (2003), 113-136. | MR | Zbl

[5] U. Bodenhofer, J. Küng: Fuzzy orderings in flexible query answering systems. Soft Computing 8 (2004), 7, 512-522. | DOI | MR | Zbl

[6] U. Bodenhofer, B. De Baets, J. Fodor: A compendium of fuzzy weak orders: representations and constructions. Fuzzy Sets and Systems 158 (2007), 593-610. | MR | Zbl

[7] M. Demirci: A theory of vague lattices based on many-valued equivalence relations - I: General representation results. Fuzzy Sets and Systems 151 (2005), 3, 437-472. | MR | Zbl

[8] J. Fodor, M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994. | Zbl

[9] J. A. Goguen: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 338-353. | MR | Zbl

[10] O. Grigorenko: Categorical aspects of aggregation of fuzzy relations. In: Abstracts 10th Conference on Fuzzy Set Theory and Applications, 2010, p. 61.

[11] O. Grigorenko: Degree of monotonicity in aggregation process. In: Proc. 2010 IEEE International Conference on Fuzzy Systems, pp. 1080-1087.

[12] H. Herrlich, G. E. Strecker: Category Theory. Second edition. Heldermann Verlag, Berlin 1978. | MR

[13] U. Höhle, N. Blanchard: Partial ordering in L-underdeterminate sets. Inform. Sci. 35 (1985), 133-144. | DOI | MR | Zbl

[14] U. Höhle: Quotients with respect to similarity relations. Fuzzy Sets and Systems 27 (1988), 31-44. | DOI | MR | Zbl

[15] U. Höhle: M-valued sets and sheaves over integral commutative cl-monoids. In: Applications of Category Theory to Fuzzy Subsets (S. E. Rodabaugh et al., eds.), Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 33-72. | MR | Zbl

[16] E. P. Klement, R. Mesiar, E. Pap: Triangular Norms. Kluwer Academic Publishers, The Netherlands 2002. | MR | Zbl

[17] H. L. Lai, D. X. Zhang: Many-valued complete distributivity. arXiv:math.CT/0603590, 2006.

[18] F. W. Lawvere: Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano 43 (1973), 135-166. Also Reprints in Theory and Applications of Categories 1 (2002). | DOI | MR

[19] F. W. Lawvere: Taking categories seriously. Revisita Columbiana de Matemáticas XX (1986), 147-178. Also Reprints in Theory and Applications of Categories 8 (2005). | MR | Zbl

[20] O. Lebedeva (Grigorenko): Fuzzy order relation and fuzzy ordered set category. In: New Dimensions in fuzzy logic and related technologies. Proc. 5th EUSFLAT Conference, Ostrava 2007, pp. 403-407

[21] S. Ovchinnikov: Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets and Systems 40 (1991), 1, 107-126. | DOI | MR | Zbl

[22] A. Sostak: Fuzzy categories versus categories of fuzzy structured sets: Elements of the theory of fuzzy categories. Mathematik-Arbeitspapiere, Universitat Bremen 48 (1997), 407-437.

[23] A. Sostak: $L$-valued categories: Generalities and examples related to algebra and topology. In: Categorical Structures and Their Applications (W. Gahler and G. Preuss, eds.), World Scientific 2004, pp. 291-312. | MR | Zbl

[24] L. A. Zadeh: Similarity relations and fuzzy orderings. Inform. Sci. 3 (1971), 177-200. | DOI | MR | Zbl

[25] L. A. Zadeh: Fuzzy sets. Inform. Control 8 (1965), 338-353. | DOI | MR | Zbl