Bounds of general Fréchet classes
Kybernetika, Tome 48 (2012) no. 1, pp. 130-143 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with conditions of compatibility of a system of copulas and with bounds of general Fréchet classes. Algebraic search for the bounds is interpreted as a solution to a linear system of Diophantine equations. Classical analytical specification of the bounds is described.
This paper deals with conditions of compatibility of a system of copulas and with bounds of general Fréchet classes. Algebraic search for the bounds is interpreted as a solution to a linear system of Diophantine equations. Classical analytical specification of the bounds is described.
Classification : 11D45, 60E05, 62H20
Keywords: copula; Fréchet class; Diophantine equation
@article{KYB_2012_48_1_a7,
     author = {Sk\v{r}iv\'anek, Jaroslav},
     title = {Bounds of general {Fr\'echet} classes},
     journal = {Kybernetika},
     pages = {130--143},
     year = {2012},
     volume = {48},
     number = {1},
     mrnumber = {2932932},
     zbl = {1251.60015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a7/}
}
TY  - JOUR
AU  - Skřivánek, Jaroslav
TI  - Bounds of general Fréchet classes
JO  - Kybernetika
PY  - 2012
SP  - 130
EP  - 143
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a7/
LA  - en
ID  - KYB_2012_48_1_a7
ER  - 
%0 Journal Article
%A Skřivánek, Jaroslav
%T Bounds of general Fréchet classes
%J Kybernetika
%D 2012
%P 130-143
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a7/
%G en
%F KYB_2012_48_1_a7
Skřivánek, Jaroslav. Bounds of general Fréchet classes. Kybernetika, Tome 48 (2012) no. 1, pp. 130-143. http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a7/

[1] F. Durante, E. P. Klement, J. J. Quesada-Molina: Bounds for trivariate copulas with given bivariate marginals. J. Inequal. Appl. ID 161537 (2008). | MR | Zbl

[2] P. Embrechts, F. Lindskog, A. McNeil: Modelling dependence with copulas and applications to risk management. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier/North-Holland 2003.

[3] P. Embrechts: Copulas: A personal view. J. Risk Insurance 76 (2009), 3, 639-650. | DOI

[4] H. Joe: Multivariate models and Dependence Concepts. Chapman&Hall, London 1997. | MR | Zbl

[5] R. B. Nelsen: Introduction to Copulas. Springer-Verlag, New York 2006. | MR | Zbl

[6] C. Genest, J. Nešlehová: A primer on copulas for count data. Astin Bull. 37 (2007), 2, 475-515. | DOI | MR

[7] A. P. Tomás, M. Filgueiras: An algorithm for solving systems of linear Diophantine equations in naturals. In: Progress in Artificial Intelligence - EPIA'97, Lecture Notes in Artificial Intelligence 1323 (E. Costa and A. Cardoso, eds.), Springer-Verlag 1997, pp. 73-84. | MR