@article{KYB_2012_48_1_a7,
author = {Sk\v{r}iv\'anek, Jaroslav},
title = {Bounds of general {Fr\'echet} classes},
journal = {Kybernetika},
pages = {130--143},
year = {2012},
volume = {48},
number = {1},
mrnumber = {2932932},
zbl = {1251.60015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a7/}
}
Skřivánek, Jaroslav. Bounds of general Fréchet classes. Kybernetika, Tome 48 (2012) no. 1, pp. 130-143. http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a7/
[1] F. Durante, E. P. Klement, J. J. Quesada-Molina: Bounds for trivariate copulas with given bivariate marginals. J. Inequal. Appl. ID 161537 (2008). | MR | Zbl
[2] P. Embrechts, F. Lindskog, A. McNeil: Modelling dependence with copulas and applications to risk management. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier/North-Holland 2003.
[3] P. Embrechts: Copulas: A personal view. J. Risk Insurance 76 (2009), 3, 639-650. | DOI
[4] H. Joe: Multivariate models and Dependence Concepts. Chapman&Hall, London 1997. | MR | Zbl
[5] R. B. Nelsen: Introduction to Copulas. Springer-Verlag, New York 2006. | MR | Zbl
[6] C. Genest, J. Nešlehová: A primer on copulas for count data. Astin Bull. 37 (2007), 2, 475-515. | DOI | MR
[7] A. P. Tomás, M. Filgueiras: An algorithm for solving systems of linear Diophantine equations in naturals. In: Progress in Artificial Intelligence - EPIA'97, Lecture Notes in Artificial Intelligence 1323 (E. Costa and A. Cardoso, eds.), Springer-Verlag 1997, pp. 73-84. | MR