Keywords: solution set of convex problems; alternative theorems; minimum norm solution; residual vector
@article{KYB_2012_48_1_a6,
author = {Ketabchi, Saeed and Moosaei, Hossein},
title = {Computing minimum norm solution of a specific constrained convex nonlinear problem},
journal = {Kybernetika},
pages = {123--129},
year = {2012},
volume = {48},
number = {1},
mrnumber = {2932931},
zbl = {1244.90181},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a6/}
}
Ketabchi, Saeed; Moosaei, Hossein. Computing minimum norm solution of a specific constrained convex nonlinear problem. Kybernetika, Tome 48 (2012) no. 1, pp. 123-129. http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a6/
[1] L. Armijo: Minimazation of functions having Lipschitz-continuous first partial derivatives. Pacific J. Math. 16 (1966), 1-3. | DOI | MR
[2] Yu. G. Evtushenko, A. I. Golikov: New perspective on the theorems of alternative. In: High Performance Algorithms and Software for Nonlinear Optimization, Kluwer Academic Publishers B.V., 2003, pp. 227-241. | MR | Zbl
[3] A. I. Golikov, Yu. G. Evtushenko: Theorems of the alternative and their applications in numerical methods. Comput. Math. and Math. Phys. 43 (2003), 338-358. | MR
[4] C. Kanzow, H. Qi, L. Qi: On the minimum norm solution of linear programs. J. Optim. Theory Appl. 116 (2003), 333-345. | DOI | MR | Zbl
[5] S. Ketabchi, E. Ansari-Piri: On the solution set of convex problems and its numerical application. J. Comput. Appl. Math. 206 (2007), 288-292. | DOI | MR | Zbl
[6] O. L. Magasarian: A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7 (1988), 21-26. | DOI | MR
[7] O. L. Magasarian: A Newton method for linear programming. J. Optim. Theory Appl. 121 (2004), 1-18. | DOI | MR
[8] O. L. Magasarian: A finite Newton method for classification. Optim. Meth. Software 17 (2002), 913-930. | DOI | MR