Keywords: chance constrained problems; penalty functions; asymptotic equivalence; sample approximation technique; investment problem
@article{KYB_2012_48_1_a5,
author = {Branda, Martin},
title = {Chance constrained problems: penalty reformulation and performance of sample approximation technique},
journal = {Kybernetika},
pages = {105--122},
year = {2012},
volume = {48},
number = {1},
mrnumber = {2932930},
zbl = {1243.93117},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a5/}
}
Branda, Martin. Chance constrained problems: penalty reformulation and performance of sample approximation technique. Kybernetika, Tome 48 (2012) no. 1, pp. 105-122. http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a5/
[1] S. Ahmed, A. Shapiro: Solving chance-constrained stochastic programs via sampling and integer programming. In: Tutorials in Operations Research, (Z.-L. Chen and S. Raghavan, eds.), INFORMS 2008.
[2] E. Angelelli, R. Mansini, M. G. Speranza: A comparison of MAD and CVaR models with real features. J. Banking Finance 32 (2008), 1188-1197. | DOI
[3] M. S. Bazara, H. D. Sherali, C. M. Shetty: Nonlinear Programming: Theory and Algorithms. Wiley, Singapore 1993. | MR
[4] M. Branda: Solving real-life portfolio problem using stochastic programming and Monte-Carlo techniques. In: Proc. Mathematical Methods in Economics 2010, (M. Houda, J. Friebelová, eds.), University of South Bohemia, České Budějovice 2010.
[5] M. Branda: Stochastic programming problems with generalized integrated chance constraints. Accepted to Optimization 2011. | MR
[6] M. Branda, J. Dupačová: Approximations and contamination bounds for probabilistic programs. Accepted to Ann. Oper. Res. 2011 (Online first). See also SPEPS 13, 2008. | MR
[7] G. Calafiore, M. C. Campi: Uncertain convex programs: randomized solutions and confidence levels. Math. Programming, Ser. A 102 (2008), 25-46. | DOI | MR
[8] A. DasGupta: Asymptotic Theory of Statistics and Probability. Springer, New York 1993. | MR
[9] J. Dupačová, M. Kopa: Robustness in stochastic programs with risk constraints. Accepted to Ann. Oper. Res. 2011 (Online first). | MR
[10] J. Dupačová, A. Gaivoronski, Z. Kos, T. Szantai: Stochastic programming in water management: A case study and a comparison of solution techniques. Europ. J. Oper. Res. 52 (1991), 28-44. | DOI | Zbl
[11] Y. M. Ermoliev, T. Y. Ermolieva, G. J. Macdonald, V. I. Norkin: Stochastic optimization of insurance portfolios for managing exposure to catastrophic risks. Ann. Oper. Res. 99 (2000), 207-225. | DOI | MR | Zbl
[12] P. Lachout: Approximative solutions of stochastic optimization problems. Kybernetika 46 (2010), 3, 513-523. | MR | Zbl
[13] J. Luedtke, S. Ahmed: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19 (2008), 674-699. | DOI | MR | Zbl
[14] J. Nocedal, S. J. Wright: Numerical Optimization. Springer, New York 2000. | MR
[15] B. Pagnoncelli, S. Ahmed, A. Shapiro: Computational study of a chance constrained portfolio selection problem. Optimization Online 2008.
[16] B. Pagnoncelli, S. Ahmed, A. Shapiro: Sample average approximation method for chance constrained programming: Theory and applications. J. Optim. Theory Appl. 142 (2009), 399-416. | DOI | MR | Zbl
[17] A. Prékopa: Contributions to the theory of stochastic programming. Math. Programming 4 (1973), 202-221. | DOI | MR | Zbl
[18] A. Prékopa: Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution. Math. Methods Oper. Res. 34 (1990), 441-461. | DOI | MR | Zbl
[19] A. Prékopa: Stochastic Programming. Kluwer, Dordrecht and Académiai Kiadó, Budapest 1995. | MR | Zbl
[20] A. Prékopa: Probabilistic programming. In: Stochastic Programming, (A. Ruszczynski and A. Shapiro,eds.), Handbook in Operations Research and Management Science, Vol. 10, Elsevier, Amsterdam 2003, pp. 267-352. | MR
[21] R. T. Rockafellar, S. Uryasev: Conditional value-at-risk for general loss distributions. J. Banking Finance 26 (2002), 1443-1471. | DOI
[22] R. T. Rockafellar, R. Wets: Variational Analysis. Springer-Verlag, Berlin 2004. | MR
[23] A. Shapiro: Monte Carlo sampling methods. In: Stochastic Programming, (A. Ruszczynski and A. Shapiro, eds.), Handbook in Operations Research and Management Science, Vol. 10, Elsevier, Amsterdam 2003, pp. 353-426. | MR
[24] S. W. Wallace, W. T. Ziemba: Applications of stochastic programming. MPS-SIAM Book Series on Optimization 5 (2005), Society for Industrial and Applied Mathematics. | MR | Zbl
[25] E. Žampachová, M. Mrázek: Stochastic optimization in beam design and its reliability check. In: MENDEL 2010 - 16th Internat. Conference on Soft Computing, (R. Matoušek), ed.), Mendel Journal series, FME BUT, Brno 2010, pp. 405-410.
[26] E. Žampachová, P. Popela, M. Mrázek: Optimum beam design via stochastic programming. Kybernetika 46 (2010), 3, 571-582. | MR | Zbl