@article{KYB_2012_48_1_a3,
author = {\v{S}m{\'\i}d, Martin},
title = {Probabilistic properties of the continuous double auction},
journal = {Kybernetika},
pages = {50--82},
year = {2012},
volume = {48},
number = {1},
mrnumber = {2932928},
zbl = {06050644},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a3/}
}
Šmíd, Martin. Probabilistic properties of the continuous double auction. Kybernetika, Tome 48 (2012) no. 1, pp. 50-82. http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a3/
[1] D. J. Daley, D. Vere-Jones: An Introduction to the Theory of Point Processes. Second edition. Springer, New York 2003. | MR | Zbl
[2] J. Hoffmann-Jørgenson: Probability with a View Towards to Statistics I. Chapman and Hall, New York, 1994.
[3] O. Kallenberg: Foundations of Modern Probability. Second edition. Springer, New York 2002. | MR | Zbl
[4] H. Luckock: A steady-state model of the continuous double auction. Quantitative Finance 3 (2003), 385-404. | DOI | MR
[5] S. Maslov: Simple model of a limit order driven market. Physica A 278 (2000), 571-578. | DOI
[6] S. Mike, J. D. Farmer: An empirical behavioral model of liquidity and volatility. J. Econom. Dynamics Control 32 (2008), 200-234. | DOI
[7] D. Pollard: A User's Guide to Measure Theoretic Probability. Cambridge Univ. Press, Cambridge 2002. | MR | Zbl
[8] M. Šmíd: On Approximation of Stochastic Programming Problems. PhD Thesis, Charles University, Department of Probability Statistics, 2004.
[9] M. Šmíd: Price tails in the Smith and Farmer's model. Bull. Czech Econometric Soc. 25 (2008), 31-40.
[10] M. Šmíd: Probabilistic Properties of the Continuous Double Auction. Research Report No. 2304. Institute of Information Theory and Automation, Prague 2011. | MR
[11] E. Smith, J. D. Farmer, L. Gillemot, S. Krishnamurthy: Statistical theory of the continuous double auction. Quantitative Finance 3 (2003), 6, 481-514. | DOI | MR