Probabilistic properties of the continuous double auction
Kybernetika, Tome 48 (2012) no. 1, pp. 50-82 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we formulate a general model of the continuous double auction. We (recursively) describe the distribution of the model. As a useful by-product, we give a (recursive) analytic description of the distribution of the process of the best quotes (bid and ask).
In this paper we formulate a general model of the continuous double auction. We (recursively) describe the distribution of the model. As a useful by-product, we give a (recursive) analytic description of the distribution of the process of the best quotes (bid and ask).
Classification : 91G80
Keywords: continuous double auction; limit order market; distribution
@article{KYB_2012_48_1_a3,
     author = {\v{S}m{\'\i}d, Martin},
     title = {Probabilistic properties of the continuous double auction},
     journal = {Kybernetika},
     pages = {50--82},
     year = {2012},
     volume = {48},
     number = {1},
     mrnumber = {2932928},
     zbl = {06050644},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a3/}
}
TY  - JOUR
AU  - Šmíd, Martin
TI  - Probabilistic properties of the continuous double auction
JO  - Kybernetika
PY  - 2012
SP  - 50
EP  - 82
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a3/
LA  - en
ID  - KYB_2012_48_1_a3
ER  - 
%0 Journal Article
%A Šmíd, Martin
%T Probabilistic properties of the continuous double auction
%J Kybernetika
%D 2012
%P 50-82
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a3/
%G en
%F KYB_2012_48_1_a3
Šmíd, Martin. Probabilistic properties of the continuous double auction. Kybernetika, Tome 48 (2012) no. 1, pp. 50-82. http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a3/

[1] D. J. Daley, D. Vere-Jones: An Introduction to the Theory of Point Processes. Second edition. Springer, New York 2003. | MR | Zbl

[2] J. Hoffmann-Jørgenson: Probability with a View Towards to Statistics I. Chapman and Hall, New York, 1994.

[3] O. Kallenberg: Foundations of Modern Probability. Second edition. Springer, New York 2002. | MR | Zbl

[4] H. Luckock: A steady-state model of the continuous double auction. Quantitative Finance 3 (2003), 385-404. | DOI | MR

[5] S. Maslov: Simple model of a limit order driven market. Physica A 278 (2000), 571-578. | DOI

[6] S. Mike, J. D. Farmer: An empirical behavioral model of liquidity and volatility. J. Econom. Dynamics Control 32 (2008), 200-234. | DOI

[7] D. Pollard: A User's Guide to Measure Theoretic Probability. Cambridge Univ. Press, Cambridge 2002. | MR | Zbl

[8] M. Šmíd: On Approximation of Stochastic Programming Problems. PhD Thesis, Charles University, Department of Probability Statistics, 2004.

[9] M. Šmíd: Price tails in the Smith and Farmer's model. Bull. Czech Econometric Soc. 25 (2008), 31-40.

[10] M. Šmíd: Probabilistic Properties of the Continuous Double Auction. Research Report No. 2304. Institute of Information Theory and Automation, Prague 2011. | MR

[11] E. Smith, J. D. Farmer, L. Gillemot, S. Krishnamurthy: Statistical theory of the continuous double auction. Quantitative Finance 3 (2003), 6, 481-514. | DOI | MR