On the extremal behavior of a Pareto process: an alternative for ARMAX modeling
Kybernetika, Tome 48 (2012) no. 1, pp. 31-49 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh-Arnold-Robertson Pareto(III) (Yeh et al. [32]). We shall see that it is quite similar to the first order max-autoregressive ARMAX, but has a more robust parameter estimation procedure, being therefore more attractive for modeling purposes. Consistency and asymptotic normality of the presented estimators will also be stated.
In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh-Arnold-Robertson Pareto(III) (Yeh et al. [32]). We shall see that it is quite similar to the first order max-autoregressive ARMAX, but has a more robust parameter estimation procedure, being therefore more attractive for modeling purposes. Consistency and asymptotic normality of the presented estimators will also be stated.
Classification : 60G70, 60J20
Keywords: extreme value theory; Markov chains; autoregressive processes; tail dependence
@article{KYB_2012_48_1_a2,
     author = {Ferreira, Marta},
     title = {On the extremal behavior of a {Pareto} process: an alternative for {ARMAX} modeling},
     journal = {Kybernetika},
     pages = {31--49},
     year = {2012},
     volume = {48},
     number = {1},
     mrnumber = {2932927},
     zbl = {1263.62109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a2/}
}
TY  - JOUR
AU  - Ferreira, Marta
TI  - On the extremal behavior of a Pareto process: an alternative for ARMAX modeling
JO  - Kybernetika
PY  - 2012
SP  - 31
EP  - 49
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a2/
LA  - en
ID  - KYB_2012_48_1_a2
ER  - 
%0 Journal Article
%A Ferreira, Marta
%T On the extremal behavior of a Pareto process: an alternative for ARMAX modeling
%J Kybernetika
%D 2012
%P 31-49
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a2/
%G en
%F KYB_2012_48_1_a2
Ferreira, Marta. On the extremal behavior of a Pareto process: an alternative for ARMAX modeling. Kybernetika, Tome 48 (2012) no. 1, pp. 31-49. http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a2/

[1] M. T. Alpuim: An extremal markovian sequence. J. Appl. Probab. 26 (1989), 219-232. | DOI | MR | Zbl

[2] B. C. Arnold: Pareto Distributions. International Cooperative Publishing House, Fairland 1983. | MR

[3] B. C. Arnold: Pareto processes. In: Handbook of Statistics (D. N. Shanbhag and C. R. Rao, eds.), Elsevier Science B.V. 2001, Vol. 19. | MR | Zbl

[4] S. Asmussen: Applied Probability and Queues. John Wiley & Sons, Chichester 1987. | MR | Zbl

[5] L. Canto e Castro: Sobre a Teoria Assintótica de Extremos. Ph.D. Thesis, FCUL 1992.

[6] M. R. Chernick: A limit theorem for the maximum of autoregressive processes with uniform marginal distribution. Ann. Probab. 9 (1981), 145-149. | DOI | MR

[7] M. R. Chernick, T. Hsing, W. P. McCormick: Calculating the extremal index for a class of stationary sequences. Adv. Probab. 23 (1991), 835-850. | DOI | MR | Zbl

[8] R. Davis, S. Resnick: Basic properties and prediction of max-ARMA processes. Adv. Appl. Probab. 21 (1989), 781-803. | DOI | MR | Zbl

[9] D. J. Daley, J. Haslett: A thermal energy storage process with controlled input. Adv. Appl. Probab. 14 (1982), 257-271. | DOI | MR | Zbl

[10] A. L. M. Dekkers, J. H. J. Einmahl, L. de Haan: A moment estimator for the index of an extreme value distribution. Ann. Statist. 17 (1989), 1833-1855. | DOI | MR | Zbl

[11] H. Drees: Extreme quantile estimation for dependent data with applications to finance. Bernoulli 9 (2003), 617-657. | DOI | MR | Zbl

[12] H. Ferreira: The upcrossings index and the extremal index. J. Appl. Probab. 43(4) (2006), 927-937. | DOI | MR | Zbl

[13] M. Ferreira, L. Canto e Castro: Modeling rare events through a $p$RARMAX process. J. Statist. Plann. Inference 140 (2010), 11, 3552-3566. | DOI | MR

[14] M. Ferreira, H. Ferreira: On extremal dependence: some contributions. (In press).

[15] I. S. Helland, T. S. Nilsen: On a general random exchange model. J. Appl. Probab. 13 (1976), 781-790. | DOI | MR | Zbl

[16] B. M. Hill: A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 (1975), 1163-1174. | DOI | MR | Zbl

[17] J. R. M. Hosking, J. R. Wallis: Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29 (1987), 339-349. | DOI | MR | Zbl

[18] T. Hsing, J. Hüsler, M. R. Leadbetter: On the exceedance point process for a stationary sequence. Probab. Theory Related Fields 78 (1988), 97-112. | DOI | MR | Zbl

[19] J. Klotz: Statistical inference in Bernoulli trials with dependence. Ann. Statist. 1 (1973), 373-379. | DOI | MR | Zbl

[20] M. R. Leadbetter: On extreme values in stationary sequences. Z. Wahrsch. verw. Gebiete 28 (1974), 289-303. | DOI | MR | Zbl

[21] M. R. Leadbetter, G. Lindgren, H. Rootzén: Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York 1983. | MR | Zbl

[22] M. R. Leadbetter, S. Nandagopalan: On exceedance point processes for stationary sequences under mild oscillation restrictions. In: Extreme Value Theory (J. Hüsler and R.-D. Reiss, eds.), Springer-Verlag 1989, pp. 69-80. | MR | Zbl

[23] A. V. Lebedev: Statistical analysis of first-order MARMA processes. Mat. Zametki 83 (2008), 4, 552-558. | MR | Zbl

[24] A. Ledford, J. A. Tawn: Statistics for near independence in multivariate extreme values. Biometrika 83 (1996), 169-187. | DOI | MR | Zbl

[25] A. Ledford, J. A. Tawn: Modelling dependence within joint tail regions. J. Royal Statist. Soc. Ser. B 59 (1997), 475-499. | DOI | MR | Zbl

[26] V. Pareto: Cours d'economie Politique. F. Rouge, Lausanne Vol. II., 1897.

[27] J. Pickands III: Statistical inference using extreme order statistics. Ann. Statist. 3 (1975), 119-131. | DOI | MR

[28] S. Resnick, C. Stǎricǎ: Consistency of Hill's estimator for dependent data. J. Appl. Probab. 32 (1995), 139-167. | DOI | MR

[29] S. Resnick, C. Stǎricǎ: Tail index estimation for dependent data. Ann. Appl. Probab. 8 (1998), 4, 1156-1183. | DOI | MR

[30] H. Rootzén, M. R. Leadbetter, L. de Haan: Tail and Quantile Estimation for Strongly Mixing Stationary Sequences. Technical Report, UNC Center for Stochastic Processes, 1990.

[31] R. L. Smith: Estimating tails of probability distributions. Ann. Statist. 15 (1987), 1174-1207. | DOI | MR | Zbl

[32] H. C. Yeh, B. C. Arnold, C. A. Robertson: Pareto processes. J. Appl. Probab. 25 (1988), 291-301. | DOI | MR | Zbl

[33] Z. Zhang, R. L. Smith: Modelling Financial Time Series Data as Moving Maxima Processes. Technical Report Dept. Stat. (Univ. North Carolina, Chapel Hill, NC, 2001); http://www.stat.unc.edu/faculty/rs/ papers/RLS_Papers.html.