The gamma-uniform distribution and its applications
Kybernetika, Tome 48 (2012) no. 1, pp. 16-30 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Up to present for modelling and analyzing of random phenomenons, some statistical distributions are proposed. This paper considers a new general class of distributions, generated from the logit of the gamma random variable. A special case of this family is the Gamma-Uniform distribution. We derive expressions for the four moments, variance, skewness, kurtosis, Shannon and Rényi entropy of this distribution. We also discuss the asymptotic distribution of the extreme order statistics, simulation issues, estimation by method of maximum likelihood and the expected information matrix. We show that the Gamma-Uniform distribution provides great flexibility in modelling for negatively and positively skewed, convex-concave shape and reverse `J' shaped distributions. The usefulness of the new distribution is illustrated through two real data sets by showing that it is more flexible in analysing of the data than of the Beta Generalized-Exponential, Beta-Exponential, Beta-Pareto, Generalized Exponential, Exponential Poisson, Beta Generalized Half-Normal and Generalized Half-Normal distributions.
Up to present for modelling and analyzing of random phenomenons, some statistical distributions are proposed. This paper considers a new general class of distributions, generated from the logit of the gamma random variable. A special case of this family is the Gamma-Uniform distribution. We derive expressions for the four moments, variance, skewness, kurtosis, Shannon and Rényi entropy of this distribution. We also discuss the asymptotic distribution of the extreme order statistics, simulation issues, estimation by method of maximum likelihood and the expected information matrix. We show that the Gamma-Uniform distribution provides great flexibility in modelling for negatively and positively skewed, convex-concave shape and reverse `J' shaped distributions. The usefulness of the new distribution is illustrated through two real data sets by showing that it is more flexible in analysing of the data than of the Beta Generalized-Exponential, Beta-Exponential, Beta-Pareto, Generalized Exponential, Exponential Poisson, Beta Generalized Half-Normal and Generalized Half-Normal distributions.
Classification : 62A10, 93E12
Keywords: Bathtub shaped hazard rate function; convex-concave shaped; ExpIntegralE function; regularized incomplete gamma function; reverse ‘J’ shaped; Shannon and Rényi entropy
@article{KYB_2012_48_1_a1,
     author = {Torabi, Hamzeh and Montazeri Hedesh, Narges},
     title = {The gamma-uniform distribution and its applications},
     journal = {Kybernetika},
     pages = {16--30},
     year = {2012},
     volume = {48},
     number = {1},
     mrnumber = {2932926},
     zbl = {1243.93123},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a1/}
}
TY  - JOUR
AU  - Torabi, Hamzeh
AU  - Montazeri Hedesh, Narges
TI  - The gamma-uniform distribution and its applications
JO  - Kybernetika
PY  - 2012
SP  - 16
EP  - 30
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a1/
LA  - en
ID  - KYB_2012_48_1_a1
ER  - 
%0 Journal Article
%A Torabi, Hamzeh
%A Montazeri Hedesh, Narges
%T The gamma-uniform distribution and its applications
%J Kybernetika
%D 2012
%P 16-30
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a1/
%G en
%F KYB_2012_48_1_a1
Torabi, Hamzeh; Montazeri Hedesh, Narges. The gamma-uniform distribution and its applications. Kybernetika, Tome 48 (2012) no. 1, pp. 16-30. http://geodesic.mathdoc.fr/item/KYB_2012_48_1_a1/

[1] A. Akinsete, F. Famoye, C. Lee: The Beta-Pareto distribution. Statistics 42 (2008), 6, 547-563. | DOI | MR

[2] L. J. Bain, M. Engelhardt: Introduction to Probability and Mathematical Statistics. Second edition. Duxbury Press, Boston 1991, pp. 250–259. | MR

[3] W. Barreto-Souza, A. H. S. Santos, G. M. Cordeirob: The Beta generalized exponential distribution. Statist. Comput. Simul. 80 (2010), 159-172. | DOI | MR

[4] K. Cooray, M. M. A. Ananda: A generalization of the half-normal distribution with applications to lifetime data. Comm. Statist. Theory Methods 37 (2008), 1323-1337. | DOI | MR | Zbl

[5] G. M. Cordeiro, A. J. Lemonte: The $\beta$-Birnbaum-Saunders distribution: An improved distribution for fatigue life modelling. Comput. Statist. Data Anal. 55 (2011), 1445-1461. | DOI | MR

[6] G. M. Cordeiro, A. J. Lemonte: The beta Laplace distribution. Statist. Probab. Lett. 81 (2011), 973-982. | DOI | MR | Zbl

[7] N. Eugene, C. Lee, F. Famoye: The Beta-Normal distribution and its applications. Commun. Statist. Theory Methods 31 (2002), 4, 497-512. | DOI | MR

[8] P. Feigl, M. Zelen: Estimation of exponential survival probabilities with concomitant information. Biometrics 21 (1965), 4, 826-838. | DOI

[9] R. D. Gupta, D. Kundu: Generalized exponential distributions. Austral. and New Zealand J. Statist. 41 (1999), 2, 173-188. | DOI | MR | Zbl

[10] M. C. Jones: Families of distributions arising from distributions of order statistics. Test 13 (2004), 1, 1-43. | DOI | MR | Zbl

[11] C. Kus: A new lifetime distribution. Comput. Statist. Data Anal. 51 (2007), 4497-4509. | DOI | MR | Zbl

[12] C. Lee, F. Famoye, O. Olumolade: The Beta-Weibull distribution. J. Statist. Theory Appl. 4 (2005), 2, 121-136. | MR

[13] S. Nadarajah, S. Kotz: The Beta Gumbel distribution. Math. Probl. Engrg. 10 (2004), 323-332. | DOI | MR | Zbl

[14] S. Nadarajah, S. Kotz: The Beta exponential distribution. Reliability Engrg. System Safety 91 (2006), 689-697. | DOI

[15] S. Nadarajah, A. K. Gupta: The Beta Fréchet distribution. Far East J. Theor. Statist. 15 (2004), 15-24. | MR | Zbl

[16] P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro, R. R. Pescim, M. A. R. Pascoa: The Beta Burr XII distribution with applications to lifetime data. Comput. Statist. Data Anal. 55 (2011), 1118-1136. | DOI | MR

[17] R. R. Pescim, C. G. B. Demétrio, G. M. Cordeiro, E. M. M. Ortega, M. R. Urbano: The Beta generalized half-Normal distribution. Comput. Statist. Data Anal. 54 (2009), 945-957. | DOI | MR

[18] E. Mahmoudi: The beta generalized Pareto distribution with application to lifetime data. Math. Comput. Simul. 81 (2011), 11, 2414-2430. | DOI | MR | Zbl

[19] G. O. Silva, E. M. M. Ortega, G. M. Cordeiro: The beta modified Weibull distribution. Lifetime Data Anal. 16 (2010), 409-430. | MR

[20] K. Zografos, S. Nadarajah: Expressions for Rényi and Shannon entropies for multivariate distributions. Statist. Probab. Lett. 71 (2005), 71-84. | DOI | MR | Zbl