Keywords: discounted Markov decision processes; differentiable value function; differentiable optimal policy; stochastic Euler equation; consumption and investment problems
@article{KYB_2011_47_6_a8,
author = {Cruz-Su\'arez, Hugo and Montes-de-Oca, Ra\'ul and Zacar{\'\i}as, Gabriel},
title = {A consumption-investment problem modelled as a discounted {Markov} decision process},
journal = {Kybernetika},
pages = {909--929},
year = {2011},
volume = {47},
number = {6},
mrnumber = {2907851},
zbl = {1241.93053},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a8/}
}
TY - JOUR AU - Cruz-Suárez, Hugo AU - Montes-de-Oca, Raúl AU - Zacarías, Gabriel TI - A consumption-investment problem modelled as a discounted Markov decision process JO - Kybernetika PY - 2011 SP - 909 EP - 929 VL - 47 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a8/ LA - en ID - KYB_2011_47_6_a8 ER -
Cruz-Suárez, Hugo; Montes-de-Oca, Raúl; Zacarías, Gabriel. A consumption-investment problem modelled as a discounted Markov decision process. Kybernetika, Tome 47 (2011) no. 6, pp. 909-929. http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a8/
[1] Aliprantis, C. D., Burkinshaw, O.: Principles of Real Analysis. Academic Press, San Diego 1998. | MR | Zbl
[2] Angelatos, G. M.: Uninsured idiosyncratic investment risk and aggregate saving. Rev. Econom. Dynam. 10 (2007), 1–30. | DOI
[3] Arrow, K. J.: A note on uncertainty and discounting in models of economic growth. J. Risk Unc. 38 (2009), 87–94. | DOI | Zbl
[4] Bertsekas, D. P.: Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Belmont 1987. | MR | Zbl
[5] Brock, W., Mirman, L.: Optimal economic growth and uncertainty: the discounted case. J. Econom. Theory 4 (1972), 479–513. | DOI | MR
[6] Cruz-Suárez, D., Montes-de-Oca, R., Salem-Silva, F.: Conditions for the uniqueness of optimal policies of discounted Markov decision processes. Math. Meth. Oper. Res. 60 (2004), 415–436. | DOI | MR | Zbl
[7] Cruz-Suárez, H., Montes-de-Oca, R.: Discounted Markov control processes induced by deterministic systems. Kybernetika 42 (2006), 647–664. | MR | Zbl
[8] Cruz-Suárez, H., Montes-de-Oca, R.: An envelope theorem and some applications to discounted Markov decision processes. Math. Meth. Oper. Res. 67 (2008), 299–321. | DOI | MR | Zbl
[9] Dynkin, E. B., Yushkevich, A. A.: Controlled Markov Processes. Springer-Verlag, New York 1980. | MR
[10] Epstein, L., Zin, S.: Substitution, risk aversion, and the temporal behaviour of consumption and asset returns I: Theoretical framework. Econometrica 57 (1989), 937–969. | DOI | MR
[11] Fuente, A. De la: Mathematical Methods and Models for Economists. Cambridge University Press, Cambridge 2000. | MR | Zbl
[12] Gurkaynak, R. S.: Econometric tests of asset price bubbles: taking stock. J. Econom. Surveys 22 (2008), 166–186. | DOI
[13] Heer, B., Maussner, A.: Dynamic General Equilibrium Modelling: Computational Method and Application. Second edition, Springer-Verlag, Berlin 2005. | MR
[14] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996. | MR
[15] Hernández-Lerma, O., Lasserre, J. B.: Value iteration and rolling plans for Markov control processes with unbounded rewards. J. Math. Anal. Appl. 177 (1993), 38–55. | DOI | MR
[16] Jaskiewics, A., Nowak, A. S.: Discounted dynamic programming with unbounded returns: application to economic models. J. Math. Anal. Appl. 378 (2011), 450–462. | DOI | MR
[17] Korn, R., Kraft, H.: A stochastic control approach to portfolio problems with stochastic interest rates. SIAM J. Control Optim. 40 (2001), 1250–1269. | DOI | MR | Zbl
[18] Kamihigashi, T.: Stochastic optimal growth with bounded or unbounded utility and bounded or unbounded shocks. J. Math. Econom. 43 (2007), 477–500. | DOI | MR
[19] Levhari, D., Srinivasan, T. N.: Optimal savings under uncertainty. Rev. Econom. Stud. 36 (1969), 153–163. | DOI
[20] Mirman, L., Zilcha, I.: On optimal growth under uncertainty. J. Econom. Theory 2 (1975), 329–339. | DOI | MR | Zbl
[21] Ramsey, F. P.: A Mathematical theory of saving. Econom. J. 38 (1928), 543–559.
[22] Stokey, N., Lucas, R., Prescott, E.: Recursive Methods in Economic Dynamics. Harvard University Press, Cambridge 1989. | MR