Robustness optimal spring balance weighing designs for estimation total weight
Kybernetika, Tome 47 (2011) no. 6, pp. 902-908 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we develop the theory of spring balance weighing designs with non-positive correlated errors for that the lower bound of the variance of estimated total weight is attained.
In this paper we develop the theory of spring balance weighing designs with non-positive correlated errors for that the lower bound of the variance of estimated total weight is attained.
Classification : 62K05, 62K10
Keywords: robustness; spring balance weighing design; total weight
@article{KYB_2011_47_6_a7,
     author = {Ceranka, Bronis{\l}aw and Graczyk, Ma{\l}gorzata},
     title = {Robustness optimal spring balance weighing designs for estimation total weight},
     journal = {Kybernetika},
     pages = {902--908},
     year = {2011},
     volume = {47},
     number = {6},
     mrnumber = {2907850},
     zbl = {06047594},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a7/}
}
TY  - JOUR
AU  - Ceranka, Bronisław
AU  - Graczyk, Małgorzata
TI  - Robustness optimal spring balance weighing designs for estimation total weight
JO  - Kybernetika
PY  - 2011
SP  - 902
EP  - 908
VL  - 47
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a7/
LA  - en
ID  - KYB_2011_47_6_a7
ER  - 
%0 Journal Article
%A Ceranka, Bronisław
%A Graczyk, Małgorzata
%T Robustness optimal spring balance weighing designs for estimation total weight
%J Kybernetika
%D 2011
%P 902-908
%V 47
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a7/
%G en
%F KYB_2011_47_6_a7
Ceranka, Bronisław; Graczyk, Małgorzata. Robustness optimal spring balance weighing designs for estimation total weight. Kybernetika, Tome 47 (2011) no. 6, pp. 902-908. http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a7/

[1] Banerjee, K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics. Marcel Dekker Inc., New York 1975. | MR | Zbl

[2] Ceranka, B., Katulska, K.: Optimum singular spring balance weighing designs with non-homogeneity of the variances of errors for estimating the total weight. Austral. J. Statist. 28 (1986), 200–205. | DOI | MR | Zbl

[3] Clatworthy, W. H.: Tables of two-associate-class partially balanced designs. NBS Appl. Math. 63 (1973). | MR | Zbl

[4] Dey, A., Gupta, S. C.: Singular weighing designs and the estimation of total weight. Comm. Statist. Theory Methods 7 (1977), 289–295. | MR

[5] Katulska, K.: On the estimation of total weight in singular spring balance weighing designs under the covariance matrix of errors $\sigma ^2{\bf G}$. Austral. J. Statist. 31 (1989), 277–286. | DOI | MR | Zbl

[6] Krzyśko, M., Skorzybut, M.: Dysciminant analysis of multivariate repeated measures data with Kronecker product structured covariance matrices. Statist. Papers 50 (2009), 817–835. | DOI | MR

[7] Masaro, J., Wong, C. S.: Robustness of A-optimal designs. Linear Algebra Appl. 429 (2008), 1392–1408. | DOI | MR | Zbl

[8] Pukelsheim, F.: Optimal Design of Experiment. John Wiley and Sons, New York 1993. | MR

[9] Raghavarao, D.: Constructions and Combinatorial Problems in designs of Experiments. John Wiley Inc., New York 1971. | MR

[10] Raghavarao, D., Padgett, L. V.: Block Designs, Analysis, Combinatorics and Applications. Series of Applied Mathematics 17, Word Scientific Publishing Co. Pte. Ltd., 2005 | MR | Zbl

[11] Sinha, B. K.: Optimum spring balance weighing designs. In: Proc. All India Convention on Quality and Reliability. Indian Inst. Tech., Kharagpur 1972.

[12] Shah, K. R., Sinha, B. K.: Theory of Optimal Designs. Springer-Verlag, Berlin 1989. | MR | Zbl