A-optimal biased spring balance weighing design
Kybernetika, Tome 47 (2011) no. 6, pp. 893-901 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study the problem of estimation of individual measurements of objects in a biased spring balance weighing design under assumption that the errors are uncorrelated and they have different variances. The lower bound for the variance of each of the estimated measurements for this design and the necessary and sufficient conditions for this lower bound to be attained are given. The incidence matrices of the balanced incomplete block designs are used for construction of the A-optimal biased spring balance weighing design.
In this paper we study the problem of estimation of individual measurements of objects in a biased spring balance weighing design under assumption that the errors are uncorrelated and they have different variances. The lower bound for the variance of each of the estimated measurements for this design and the necessary and sufficient conditions for this lower bound to be attained are given. The incidence matrices of the balanced incomplete block designs are used for construction of the A-optimal biased spring balance weighing design.
Classification : 62K05, 62K10
Keywords: A-optimal design; biased design; spring balance weighing design
@article{KYB_2011_47_6_a6,
     author = {Graczyk, Ma{\l}gorzata},
     title = {A-optimal biased spring balance weighing design},
     journal = {Kybernetika},
     pages = {893--901},
     year = {2011},
     volume = {47},
     number = {6},
     mrnumber = {2907849},
     zbl = {06047593},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a6/}
}
TY  - JOUR
AU  - Graczyk, Małgorzata
TI  - A-optimal biased spring balance weighing design
JO  - Kybernetika
PY  - 2011
SP  - 893
EP  - 901
VL  - 47
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a6/
LA  - en
ID  - KYB_2011_47_6_a6
ER  - 
%0 Journal Article
%A Graczyk, Małgorzata
%T A-optimal biased spring balance weighing design
%J Kybernetika
%D 2011
%P 893-901
%V 47
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a6/
%G en
%F KYB_2011_47_6_a6
Graczyk, Małgorzata. A-optimal biased spring balance weighing design. Kybernetika, Tome 47 (2011) no. 6, pp. 893-901. http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a6/

[1] Banerjee, K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics. Marcel Dekker Inc., New York 1975. | MR | Zbl

[2] Ceranka, B., Katulska, K.: Optimum spring balance weighing designs with non-homogeneity of the variances of errors. J. Statist. Plann. Inference 30 (1992), 185–193. | DOI | MR

[3] Ceranka, B., Katulska, K.: A-optimal chemical balance weighing designs with diagonal covariance matrix of errors. In: MODA 6 (A. C. Atkinson, P. Hackl, W. G. Muller, eds.), Physica, Heidelberg 2001, pp. 29–36. | MR

[4] Ceranka, B., Graczyk, M., Katulska, K.: A-optimal chemical balance weighing design with nonhomogeneity of variances of errors. Statist. Probab. Lett. 76 (2006), 653–665. | DOI | MR | Zbl

[5] Pukelsheim, F.: Optimal Design of Experiment. John Wiley and Sons, New York 1993. | MR

[6] Raghavarao, D.: Constructions and Combinatorial Problems in Designs of Experiments. John Wiley Inc., New York 1971. | MR

[7] Shah, K. R., Sinha, B. K. : Theory of Optimal Designs. Springer-Verlag, Berlin 1989. | MR | Zbl