Keywords: nonparametric functional estimation; density estimation; regression estimation; bootstrap; resampling methods; confidence regions; empirical processes
@article{KYB_2011_47_6_a3,
author = {Deheuvels, Paul},
title = {One {Bootstrap} suffices to generate sharp uniform bounds in functional estimation},
journal = {Kybernetika},
pages = {855--865},
year = {2011},
volume = {47},
number = {6},
mrnumber = {2907846},
zbl = {06047590},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a3/}
}
Deheuvels, Paul. One Bootstrap suffices to generate sharp uniform bounds in functional estimation. Kybernetika, Tome 47 (2011) no. 6, pp. 855-865. http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a3/
[1] Akaike, H.: An approximation of the density function. Ann. Inst. Statist. Math. 6 (1954), 127–132. | DOI | MR
[2] Bickel, P. J., Rosenblatt, M.: On some global measures of the deviations of density functions estimates. Ann. Statist. 1 (1973), 1071–1095. | DOI | MR
[3] Claeskens, G., Keilegom, I. van: Bootstrap confidence bands for regression curves and their derivatives. Ann. Statist. 31 (2003), 1852–1884. | DOI | MR
[4] Deheuvels, P., Derzko, G.: Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme. In: Statistical Models and Methods for Biomedical and Technical systems, Stat. Ind. Technol., Birkhäuser, Boston MA 2008, pp. 171–186. | MR
[5] Deheuvels, P., Mason, D. M.: General asymptotic confidence bands based on kernel-type function estimators. Statist. Infer. Stoch. Processes 7 (2004), 225–277. | DOI | MR | Zbl
[6] Dudley, R. M.: Uniform Central Limit Theorems. Cambridge University Press, Cambridge 1999. | MR | Zbl
[7] Efron, B.: Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 (1979), 1–26. | DOI | MR | Zbl
[8] Einmahl, U., Mason, D. M.: Uniform in bandwidth consistency of kernel-type function estimators. Ann. Statist. 33 (2005), 1380–1403. | DOI | MR | Zbl
[9] Giné, E., Koltchinskii, V., Sakhanenko, L.: Kernel density estimators: convergence in distribution for weighted sup-norms. Probab. Theory Related Fields 130 (2004), 167–198. | DOI | MR | Zbl
[10] Giné, E., Mason, D. M.: On local $U$-statistic processes and the estimation of densities of functions of several sample variables. Ann. Statist. 35 (2007), 1105–1145. | DOI | MR | Zbl
[11] Hall, P.: The Bootstrap and Edgeworth Expansion. Springer, New York 1992. | MR | Zbl
[12] Härdle, W., Marron, J. S.: Bootstrap simultaneous error bars for nonparametric regression. Ann. Statist. 19 (1991), 778–796. | DOI | MR
[13] Härdle, W., Bowman, A. W.: Bootstrapping in nonparametric regression: Local adaptative smoothing and confidence bands. J. Amer. Statist. Assoc. 83 (1988), 102–110. | MR
[14] Li, G., Datta, S.: A bootstrap approach to nonparametric regression for right censored data. Ann. Inst. Statist. Math. 53 (2001), 708–729. | DOI | MR | Zbl
[15] Mason, D. M., Newton, M. A.: A rank statistics approach to the consistency of a general bootstrap. Ann. Statist. 20 (1992), 1611–1624. | DOI | MR | Zbl
[16] Nadaraya, E. A.: On estimating regression. Theor. Probab. Appl. 9 (1964), 141–142. | DOI | Zbl
[17] Nolan, D., Pollard, D.: $U$-processes: Rates of convergence. Ann. Statist. 15 (1987), 780–799. | DOI | MR | Zbl
[18] Parzen, E.: On the estimation of probability density and mode. Ann. Math. Statist. 33 (1962), 1065–1076. | DOI | MR
[19] Pollard, D.: Convergence of Stochastic Processes. Springer, New York 1984. | MR | Zbl
[20] Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956), 832–837. | DOI | MR | Zbl
[21] Vaart, A. W. van der, Wellner, J. A.: Weak Convergence and Empirical Processes with Aplications to Statistics. Springer, New York 1996. | MR
[22] Watson, G. S.: Smooth regression analysis. Sankhyā A 26 (1964), 359–372. | MR | Zbl