Keywords: $\epsilon$-argmin of stochastic process; random closed sets; weak convergence of Hoffmann--Jørgensen; Fell-topology; Missing-topology
@article{KYB_2011_47_6_a11,
author = {Ferger, Dietmar},
title = {On the {Argmin-sets} of stochastic processes and their distributional convergence in {Fell-type-topologies}},
journal = {Kybernetika},
pages = {955--968},
year = {2011},
volume = {47},
number = {6},
mrnumber = {2907854},
zbl = {1241.93054},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a11/}
}
Ferger, Dietmar. On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies. Kybernetika, Tome 47 (2011) no. 6, pp. 955-968. http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a11/
[1] Billingsley, P.: Convergence of Probability Measures. John Wiley & Sons, New York 1968. | MR | Zbl
[2] Ferger, D.: A continuous mapping theorem for the Argmax-functional in the non-unique case. Statist. Neerlandica 58 (2004), 83–96. | DOI | MR | Zbl
[3] Gänssler, P., Stute, W.: Wahrscheinlichkeitstheorie. Springer–Verlag, Berlin – Heidelberg 1977. | MR
[4] Gersch, O.: Convergence in Distribution of Random Closed Sets and Applications in Stability Theory and Stochastic Optimization. PhD Thesis. Technische Universität Ilmenau 2007.
[5] Kallenberg, O.: Foundations of Modern Probability. Springer–Verlag, New York 1997. | MR | Zbl
[6] Lagodowski, A., Rychlik, Z.: Weak convergence of probability measures on the function space $D_d[0,\infty )$. Bull. Polish Acad. Sci. Math. 34 (1986), 329–335. | MR
[7] Lindvall, T.: Weak convergence of probability measures and random functions in the function space $D[0,\infty )$. J. Appl. Probab. 10 (1973), 109–121. | DOI | MR | Zbl
[8] Norberg, T.: Convergence and existence of random set distributions. Ann. Probab. 12 (1984), 726–732. | DOI | MR | Zbl
[9] Pflug, G. Ch.: Asymptotic dominance and confidence for solutions of stochastic programs. Czechoslovak J. Oper. Res. 1 (1992), 21–30. | Zbl
[10] Pflug, G. Ch.: Asymptotic stochastic orograms. Math. Oper. Res. 20 (1995), 769–789. | DOI | MR
[11] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis. Springer–Verlag, Berlin – Heidelberg 1998. | MR | Zbl
[12] Royden, H. L.: Real Analysis. Third edition Macmillan Publishing Company, New York 1988. | MR | Zbl
[13] Salinetti, G., Wets, R. J.-B.: On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. Math. Oper. Res. 11 (1986), 385–419. | DOI | MR | Zbl
[14] Vaart, A. W. van der, Wellner, J. A.: Weak Convergence and Empirical Processes. Springer–Verlag, New York 1996. | MR
[15] Vogel, S.: Qualitative stability of stochastic programs with applications in asymptotic statistics. Statist. Decisions 23 (2005), 219–248. | DOI | MR | Zbl
[16] Vogel, S.: Semiconvergence in distribution of random closed sets with applications to random optimization problems. Ann. Oper. Res. 142 (2006), 269–282. | DOI | MR