On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies
Kybernetika, Tome 47 (2011) no. 6, pp. 955-968 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\epsilon-\text(Z)$ be the collection of all $\epsilon$-optimal solutions for a stochastic process $Z$ with locally bounded trajectories defined on a topological space. For sequences $(Z_n)$ of such stochastic processes and $(\epsilon_n)$ of nonnegative random variables we give sufficient conditions for the (closed) random sets $\epsilon_n-\text(Z_n)$ to converge in distribution with respect to the Fell-topology and to the coarser Missing-topology.
Let $\epsilon-\text(Z)$ be the collection of all $\epsilon$-optimal solutions for a stochastic process $Z$ with locally bounded trajectories defined on a topological space. For sequences $(Z_n)$ of such stochastic processes and $(\epsilon_n)$ of nonnegative random variables we give sufficient conditions for the (closed) random sets $\epsilon_n-\text(Z_n)$ to converge in distribution with respect to the Fell-topology and to the coarser Missing-topology.
Classification : 49J53, 60B10, 60F05, 90C15
Keywords: $\epsilon$-argmin of stochastic process; random closed sets; weak convergence of Hoffmann--Jørgensen; Fell-topology; Missing-topology
@article{KYB_2011_47_6_a11,
     author = {Ferger, Dietmar},
     title = {On the {Argmin-sets} of stochastic processes and their distributional convergence in {Fell-type-topologies}},
     journal = {Kybernetika},
     pages = {955--968},
     year = {2011},
     volume = {47},
     number = {6},
     mrnumber = {2907854},
     zbl = {1241.93054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a11/}
}
TY  - JOUR
AU  - Ferger, Dietmar
TI  - On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies
JO  - Kybernetika
PY  - 2011
SP  - 955
EP  - 968
VL  - 47
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a11/
LA  - en
ID  - KYB_2011_47_6_a11
ER  - 
%0 Journal Article
%A Ferger, Dietmar
%T On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies
%J Kybernetika
%D 2011
%P 955-968
%V 47
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a11/
%G en
%F KYB_2011_47_6_a11
Ferger, Dietmar. On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies. Kybernetika, Tome 47 (2011) no. 6, pp. 955-968. http://geodesic.mathdoc.fr/item/KYB_2011_47_6_a11/

[1] Billingsley, P.: Convergence of Probability Measures. John Wiley & Sons, New York 1968. | MR | Zbl

[2] Ferger, D.: A continuous mapping theorem for the Argmax-functional in the non-unique case. Statist. Neerlandica 58 (2004), 83–96. | DOI | MR | Zbl

[3] Gänssler, P., Stute, W.: Wahrscheinlichkeitstheorie. Springer–Verlag, Berlin – Heidelberg 1977. | MR

[4] Gersch, O.: Convergence in Distribution of Random Closed Sets and Applications in Stability Theory and Stochastic Optimization. PhD Thesis. Technische Universität Ilmenau 2007.

[5] Kallenberg, O.: Foundations of Modern Probability. Springer–Verlag, New York 1997. | MR | Zbl

[6] Lagodowski, A., Rychlik, Z.: Weak convergence of probability measures on the function space $D_d[0,\infty )$. Bull. Polish Acad. Sci. Math. 34 (1986), 329–335. | MR

[7] Lindvall, T.: Weak convergence of probability measures and random functions in the function space $D[0,\infty )$. J. Appl. Probab. 10 (1973), 109–121. | DOI | MR | Zbl

[8] Norberg, T.: Convergence and existence of random set distributions. Ann. Probab. 12 (1984), 726–732. | DOI | MR | Zbl

[9] Pflug, G. Ch.: Asymptotic dominance and confidence for solutions of stochastic programs. Czechoslovak J. Oper. Res. 1 (1992), 21–30. | Zbl

[10] Pflug, G. Ch.: Asymptotic stochastic orograms. Math. Oper. Res. 20 (1995), 769–789. | DOI | MR

[11] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis. Springer–Verlag, Berlin – Heidelberg 1998. | MR | Zbl

[12] Royden, H. L.: Real Analysis. Third edition Macmillan Publishing Company, New York 1988. | MR | Zbl

[13] Salinetti, G., Wets, R. J.-B.: On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. Math. Oper. Res. 11 (1986), 385–419. | DOI | MR | Zbl

[14] Vaart, A. W. van der, Wellner, J. A.: Weak Convergence and Empirical Processes. Springer–Verlag, New York 1996. | MR

[15] Vogel, S.: Qualitative stability of stochastic programs with applications in asymptotic statistics. Statist. Decisions 23 (2005), 219–248. | DOI | MR | Zbl

[16] Vogel, S.: Semiconvergence in distribution of random closed sets with applications to random optimization problems. Ann. Oper. Res. 142 (2006), 269–282. | DOI | MR