Generalized logistic model and its orthant tail dependence
Kybernetika, Tome 47 (2011) no. 5, pp. 732-739 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Multivariate Extreme Value distributions have shown their usefulness in environmental studies, financial and insurance mathematics. The Logistic or Gumbel-Hougaard distribution is one of the oldest multivariate extreme value models and it has been extended to asymmetric models. In this paper we introduce generalized logistic multivariate distributions. Our tools are mixtures of copulas and stable mixing variables, extending approaches in Tawn [14], Joe and Hu [6] and Fougères et al. [3]. The parametric family of multivariate extreme value distributions considered presents a flexible dependence structure and we compute for it the multivariate tail dependence coefficients considered in Li [7].
The Multivariate Extreme Value distributions have shown their usefulness in environmental studies, financial and insurance mathematics. The Logistic or Gumbel-Hougaard distribution is one of the oldest multivariate extreme value models and it has been extended to asymmetric models. In this paper we introduce generalized logistic multivariate distributions. Our tools are mixtures of copulas and stable mixing variables, extending approaches in Tawn [14], Joe and Hu [6] and Fougères et al. [3]. The parametric family of multivariate extreme value distributions considered presents a flexible dependence structure and we compute for it the multivariate tail dependence coefficients considered in Li [7].
Classification : 60G70
Keywords: multivariate extreme value distribution; tail dependence; logistic model; mixture
@article{KYB_2011_47_5_a5,
     author = {Ferreira, Helena and Pereira, Luisa},
     title = {Generalized logistic model and its orthant tail dependence},
     journal = {Kybernetika},
     pages = {732--739},
     year = {2011},
     volume = {47},
     number = {5},
     mrnumber = {2850460},
     zbl = {1250.62027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_5_a5/}
}
TY  - JOUR
AU  - Ferreira, Helena
AU  - Pereira, Luisa
TI  - Generalized logistic model and its orthant tail dependence
JO  - Kybernetika
PY  - 2011
SP  - 732
EP  - 739
VL  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_5_a5/
LA  - en
ID  - KYB_2011_47_5_a5
ER  - 
%0 Journal Article
%A Ferreira, Helena
%A Pereira, Luisa
%T Generalized logistic model and its orthant tail dependence
%J Kybernetika
%D 2011
%P 732-739
%V 47
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_5_a5/
%G en
%F KYB_2011_47_5_a5
Ferreira, Helena; Pereira, Luisa. Generalized logistic model and its orthant tail dependence. Kybernetika, Tome 47 (2011) no. 5, pp. 732-739. http://geodesic.mathdoc.fr/item/KYB_2011_47_5_a5/

[1] Capéraà, P., Fougères, A. L., Genest, C.: Bivariate distributions with given extreme value attractor. J. Multivariate Anal. 72 (2000), 30–49. | DOI | MR

[2] Cuadras, C. M., Augé, J.: A continuous general multivariate distribution and its properties. Comm. Statist. A - Theory Methods 10 (1981), 339–353. | DOI | MR

[3] Fougères, A.-L., Nolan, J. P., Rootzén, H.: Models for dependent extremes using scale mixtures. Scand. J. Statist. 36 (2009), 42–59. | MR

[4] Heffernan, J. E., Tawn, J. A., Zhang, Z.: Asymptotically (in)dependent multivariate maxima of moving maxima processes. Extremes 10 (2007), 57–82. | DOI | MR

[5] Joe, H.: Multivariate Models and Dependence Concepts. Chapman & Hall, London 1997. | MR

[6] Joe, H., Hu, T.: Multivariate distributions from mixtures of max-infinitely divisible distributions. J. Multivariate Anal. 57 (1996), 240–265. | DOI | MR | Zbl

[7] Li, H.: Orthant tail dependence of multivariate extreme value distributions. J. Multivariate Anal. 100 (2009), 243–256. | DOI | MR | Zbl

[8] Marshall, A. W., Olkin, I.: Families of multivariate distributions. J. Amer. Statist. Assoc. 83 (1988), 834–841. | DOI | MR | Zbl

[9] McNeil, A. J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton 2005. | MR | Zbl

[10] Morillas, P. M.: A method to obtain new copulas from a given one. Metrika 61 (2005), 169–184. | DOI | MR | Zbl

[11] Nelsen, R. B.: An Introduction to Copulas. Springer, New York 1999. | MR | Zbl

[12] Schmid, F., Schmidt, R.: Multivariate conditional versions of Spearman’s rho and related measures of tail dependence. J. Multivariate Anal. 98 (2007), 1123–1140. | DOI | MR | Zbl

[13] Smith, R. L., Weissman, I.: Characterization and Estimation of the Multivariate Extremal Index. Technical Report, Univ. North Carolina 1996.

[14] Tawn, J.: Modelling multivariate extreme value distributions. Biometrika 77 (1990), 2, 245–253. | DOI | Zbl