Keywords: kernel estimation; marked Poisson process; mean mark estimation; location-dependent mark distribution; segment process
@article{KYB_2011_47_5_a2,
author = {Mrkvi\v{c}ka, Tom\'a\v{s} and Goreaud, Fran\c{c}ois and Chadoeuf, Jo\"el},
title = {Spatial prediction of the mark of a location-dependent marked point process: {How} the use of a parametric model may improve prediction},
journal = {Kybernetika},
pages = {696--714},
year = {2011},
volume = {47},
number = {5},
mrnumber = {2850457},
zbl = {1238.62111},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_5_a2/}
}
TY - JOUR AU - Mrkvička, Tomáš AU - Goreaud, François AU - Chadoeuf, Joël TI - Spatial prediction of the mark of a location-dependent marked point process: How the use of a parametric model may improve prediction JO - Kybernetika PY - 2011 SP - 696 EP - 714 VL - 47 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2011_47_5_a2/ LA - en ID - KYB_2011_47_5_a2 ER -
%0 Journal Article %A Mrkvička, Tomáš %A Goreaud, François %A Chadoeuf, Joël %T Spatial prediction of the mark of a location-dependent marked point process: How the use of a parametric model may improve prediction %J Kybernetika %D 2011 %P 696-714 %V 47 %N 5 %U http://geodesic.mathdoc.fr/item/KYB_2011_47_5_a2/ %G en %F KYB_2011_47_5_a2
Mrkvička, Tomáš; Goreaud, François; Chadoeuf, Joël. Spatial prediction of the mark of a location-dependent marked point process: How the use of a parametric model may improve prediction. Kybernetika, Tome 47 (2011) no. 5, pp. 696-714. http://geodesic.mathdoc.fr/item/KYB_2011_47_5_a2/
[1] Bouchon, J., Faille, Lemée, G., Robin, A. M., Schmitt, A.: Cartes et notice des sols, du peuplement forestier et des groupements végétaux de la réserve biologique de la Tillaie en forêt de Fontainebleau. University of Orsay 1973.
[2] Coudun, C., Gegout, J. C.: Quantitative prediction of the distribution and abundance of Vaccinium myrtillus (L.) with climatic and edaphic factors. J. Vegetation Sci. 18 (2007), 4, 517-524. | DOI
[3] Finney, D. J.: On the distribution of a variable whose logarithm is normally distributed. J. Roy. Statist. Soc. Ser. B 7 (1941), 155-161. | MR
[4] Flénet, F., Villon, P., Ruget, F.: Methodology of adaptation of the STICS model to a new crop: spring linseed (Linum usitatissimum, L.). Agronomie 24 (2004), 6-7, 367-381. | MR
[5] Green, W. H.: Econometric Analysis. Prentice Hall, New Jersey 2003.
[6] Guinier, Ph.: Foresterie et protection de la nature. L'exemple de Fontainebleau. Rev. Forestière Française II (1950), 703-717.
[7] Härdle, W.: Applied Non-parametric Regression. Cambridge University Press, Cambridge 1990.
[8] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, New York 2008. | MR | Zbl
[9] Kelsall, J., Diggle, P. J.: Kernel estimation of relative risk. Bernoulli 1 (1995), 3-16. | DOI | MR | Zbl
[10] Kelsall, J., Diggle, P. J.: Non-parametric estimation of spatial variation in relative risk. Statist. Medicine 14 (1995), 2335-2342. | DOI
[11] Lawson, A. B.: Statistical Methods in Spatial Epidemiology. Wiley, Chichester 2001. | MR | Zbl
[12] Lehmann, E. L.: Theory of Point Estimation. Wadsworth & Brooks, California 1991. | MR | Zbl
[13] Mrkvička, T.: Estimation variances for Poisson process of compact sets. Adv. Appl. Prob. (SGSA) 33 (2001), 765-772. | DOI | MR
[14] Mrkvička, T.: Estimation variances for parameterized marked point processes and for parameterized Poisson segment processes. Comment. Math. Univ. Carolin. 45,1 (2004), 109-117. | MR
[15] Mrkvička, T.: Estimation of intersection intensity in Poisson processes of segments. Comment. Math. Univ. Carolin. 48 (2007), 93-106. | MR
[16] Mrkvička, T., Soubeyrand, S., Chadoeuf, J.: Goodness-of-fit Test of the Mark Distribution in a Point Process with Non-stationary Marks. Research Report 36, Biostatistics and Spatial Processes Research Unit. INRA, Avignon 2009.
[17] Noblet-Ducoudré, N. de, Gervois, S., Ciais, P., Viovy, N., Brisson, N., Seguin, B., Perrier, A.: Coupling the soil-vegetation-atmosphere-transfer scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the european carbon and water budgets. Agronomie 24 (2004), 6-7, 397-407.
[18] Penttinen, A., Stoyan, D., Hentonnen, H.: Marked point processes in forests statistics. Forest Sci. 38 (1992), 4, 806-824.
[19] Pontailler, J. Y., Faille, A., Lemee, G.: Storms drive successiinal dynamics in natural forests: a case study in Fontainebleau forest (France). Forest Ecology and Management 98 (1997), 1-15.
[20] Silverman, B. W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London 1986. | MR | Zbl
[21] Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and Its Applications. Second edition. John Wiley and Sons, New York 1995. | MR
[22] Bodegom, P. Van, Verburg, P. H., Stein, A., Adiningsih, S., Gon, H. A. C. Denier Van Der: Effects of interpolation and data resolution on methane emission estimates from rice paddies. Environ. Ecol. Statist. 9 (2002), 5-26. | DOI | MR