Keywords: reduced covariance measure; factorial moment and cumulant measures; kernel-type estimator; subsampling; mean squared error; Poisson cluster process; hard-core process
@article{KYB_2011_47_5_a1,
author = {Proke\v{s}ov\'a, Michaela},
title = {Estimators of the asymptotic variance of stationary point processes - a comparison},
journal = {Kybernetika},
pages = {678--695},
year = {2011},
volume = {47},
number = {5},
mrnumber = {2850456},
zbl = {1238.62098},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_5_a1/}
}
Prokešová, Michaela. Estimators of the asymptotic variance of stationary point processes - a comparison. Kybernetika, Tome 47 (2011) no. 5, pp. 678-695. http://geodesic.mathdoc.fr/item/KYB_2011_47_5_a1/
[1] S. Böhm, L. Heinrich, V. Schmidt: Kernel estimation of the spectral density of stationary random closed sets. Austral. & New Zealand J. Statist. 46 (2004), 41-52. | DOI | MR | Zbl
[2] K. L. Chung: A Course in Probability Theory. Second edition. Harcourt Brace Jovanovich, New York 1974. | MR | Zbl
[3] D. J. Daley, D. Vere-Jones: An Introduction to the Theory of Point Processes. Second edition. Vol I and II, Springer, New York 2003, 2008. | MR | Zbl
[4] S. David: Central Limit Theorems for Empirical Product Densities of Stationary Point Processes. Phd. Thesis, Augsburg Universität 2008.
[5] L. Heinrich: Asymptotic gaussianity of some estimators for reduced factorial moment measures and product densities of stationary Poisson cluster processes. Statistics 19 (1988), 87-106. | DOI | MR | Zbl
[6] L. Heinrich: Normal approximation for some mean-value estimates of absolutely regular tesselations. Math. Methods Statist. 3 (1994), 1-24. | MR
[7] L. Heinrich: Asymptotic goodness-of-fit tests for point processes based on scaled empirical K-functions. Submitted.
[8] L. Heinrich, E. Liebscher: Strong convergence of kernel estimators for product densities of absolutely regular point processes. J. Nonparametric Statist. 8 (1997), 65-96. | DOI | MR | Zbl
[9] L. Heinrich, M. Prokešová: On estimating the asymptotic variance of stationary point processes. Methodology Comput. in Appl. Probab. 12 (2010), 451-471. | DOI | MR | Zbl
[10] L. Heinrich, V. Schmidt: Normal convergence of multidimensional shot noise and rates of this convergence. Adv. in Appl. Probab. 17 (1985), 709-730. | DOI | MR | Zbl
[11] J. Illian, A. Penttinen, H. Stoyan, D. Stoyan: Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley and Sons, Chichester 2008. | MR | Zbl
[12] E. Jolivet: Central limit theorem and convergence of empirical processes of stationary point processes. In: Point Processes and Queueing Problems (P. Bartfai and J. Tomko, eds.), North-Holland, New York 1980, pp. 117-161. | MR
[13] S. Mase: Asymptotic properties of stereological estimators for stationary random sets. J. Appl. Probab. 19 (1982), 111-126. | DOI | MR
[14] D. N. Politis: Subsampling. Springer, New York 1999. | MR | Zbl
[15] D. N. Politis, M. Sherman: Moment estimation for statistics from marked point processes. J. Roy. Statist. Soc. Ser. B 63 (2001), 261-275. | DOI | MR | Zbl
[16] M. Prokešová, E. B. Vedel-Jensen: Asymptotic Palm likelihood theory for stationary point processes. Submitted.
[17] B. D. Ripley: Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge 1988. | MR | Zbl
[18] D. Stoyan, W. S. Kendall, J. Mecke: Stochastic Geometry and its Applications. Second edition. J. Wiley & Sons, Chichester 1995. | MR | Zbl
[19] J. C. Taylor: An Introduction to Measure and Probability. Springer, New York 1997. | MR
[20] L. Zhengyan, L. Chuanrong: Limit Theory for Mixing Dependent Random Variables. Kluwer Academic Publishers, Dordrecht 1996. | MR | Zbl