Keywords: rank test; random blocks; hypotheses testing; increasing treatment effect; asymptotic distribution
@article{KYB_2011_47_5_a0,
author = {Rubl{\'\i}k, Franti\v{s}ek},
title = {On testing hypotheses in the generalized {Skillings-Mack} random blocks setting},
journal = {Kybernetika},
pages = {657--677},
year = {2011},
volume = {47},
number = {5},
mrnumber = {2850455},
zbl = {1238.62056},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_5_a0/}
}
Rublík, František. On testing hypotheses in the generalized Skillings-Mack random blocks setting. Kybernetika, Tome 47 (2011) no. 5, pp. 657-677. http://geodesic.mathdoc.fr/item/KYB_2011_47_5_a0/
[1] Conover, W. J.: Rank tests for one sample, two samples, and k samples without the assumption of a continuous distribution function. Ann. Statist. 1 (1973), 1105–1125. | DOI | MR | Zbl
[2] Conover, W. J.: Practical Nonparametric Statistics. Third edition. John Wiley & Sons, Inc., New York 1999.
[3] Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Amer. Statist. Assoc. 32 (1937), 675–701. | DOI
[4] Hájek, J.: A Course in Noparametric Statistics. Holden Day, San Francisco 1969. | MR
[5] Hájek, J., Šidák, Z., Sen, P. K.: Theory of Rank Tests. Academic Press, New York 1999. | MR
[6] Lehmann, E. L.: Nonparametrics. Statistical Methods Based on Ranks. Springer Science and Business Media, New York 2006. | MR | Zbl
[7] Page, E. B.: Ordered hypotheses for multiple treatments: A significance test for linear ranks. J. Amer. Statist. Assoc. 58 (1963), 216–230. | DOI | MR | Zbl
[8] Skillings, J. H., Mack, G. A.: On the use of a Friedman–type statistic in balanced and unbalanced block designs. Technometrics 23 (1981), 171–177. | DOI | Zbl