Keywords: singularly perturbed systems; three--point boundary value problem; method of lower and upper solutions; controller
@article{KYB_2011_47_4_a9,
author = {Vrabel, Robert},
title = {Boundary layer phenomenon for three -point boundary value problem for the nonlinear singularly perturbed systems},
journal = {Kybernetika},
pages = {644--652},
year = {2011},
volume = {47},
number = {4},
mrnumber = {2884866},
zbl = {1227.93080},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a9/}
}
Vrabel, Robert. Boundary layer phenomenon for three -point boundary value problem for the nonlinear singularly perturbed systems. Kybernetika, Tome 47 (2011) no. 4, pp. 644-652. http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a9/
[1] Artstein, Z.: Stability in the presence of singular perturbations. Nonlinear Anal. 34(6) (1998), 817–827. | DOI | MR | Zbl
[2] Artstein, Z.: Singularly perturbed ordinary differential equations with nonautonomous fast dynamics. J. Dynam. Different. Eqs. 11 (1999), 297–318. | DOI | MR | Zbl
[3] Artstein, Z., Gaitsgory, V.: The value function of singularly perturbed control system. Appl. Math. Optim. 41 (2000), 425–445. | DOI | MR
[4] Gaitsgory, V.: On a pepresentation of the limit occupational measures set of a control system with applications to singularly perturbed control systems. SIAM J. Control Optim. 43(1) (2004), 325–340. | DOI | MR
[5] Burman, E., Guzmán, J., Leykekhman, D.: Weighted error estimates of the continuous interior penalty method for singularly perturbed problems. IMA J. Numer. Anal. 29(2) (2009), 284–314. | DOI | MR | Zbl
[6] Gaitsgory, V., Nguyen, M. T.: Multiscale singularly perturbed control systems: Limit occupational measures sets and averaging. SIAM J. Control Optim. 41(3) (2002), 954–974. | DOI | MR | Zbl
[7] Gopal, M.: Modern Control System Theory. New Age International, New Delhi 1993.
[8] Guo, Y., Ge, W.: Positive solutions for three-point boundary value problems with dependence on the first order derivative. J. Math. Anal. Appl. 290(1) (2004), 291–301. | DOI | MR | Zbl
[9] Chang, K. W., Howes, F. A.: Nonlinear Singular Perturbation Phenomena: Theory and Applications. Springer-Verlag, New York 1984. | MR | Zbl
[10] Khan, A., Khan, I., Aziz, T., Stojanovic, M.: A variable-mesh approximation method for singularly perturbed boundary-value problems using cubic spline in tension. Internat. J. Comput. Math. 81 (2004), 12, 1513–1518. | DOI | MR | Zbl
[11] Khan, R. A.: Positive solutions of four-point singular boundary value problems. Appl. Math. Comput. 201 (2008), 762–773. | DOI | MR | Zbl
[12] Kokotovic, P., Khali, H. K., O’Reilly, J.: Singular Perturbation Methods in Control, Analysis and Design. Academic Press, London 1986. | MR
[13] Natesan, S., Ramanujam, M.: Initial-value technique for singularly-perturbed turning-point problems exhibiting twin boundary layers. J. Optim. Theory Appl. 99 (1998), 1, 37–52. | DOI | MR | Zbl
[14] Vrabel, R.: Three point boundary value problem for singularly perturbed semilinear differential equations. E. J. Qualitative Theory of Diff. Equ. 70 (2009), 1–4. | MR | Zbl