Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle
Kybernetika, Tome 47 (2011) no. 4, pp. 612-629 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper treats the question of robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle. We first present the solution of the global robust output regulation problem for output feedback system with nonlinear exosystem. Then we show that the robust control problem for the modified FitzHugh-Nagumo neuron model can be formulated as the global robust output regulation problem and the solvability conditions for the output regulation problem for the modified FitzHugh-Nagumo neuron model are all satisfied. Then we apply the obtained output regulation results to the control problem for modified FitzHugh-Nagumo neuron model. Finally, an output feedback control law is designed for the modified FitzHugh-Nagumo neuron model to achieve global stability of the closed-loop system in the presence of uncertain parameters and external stimulus. An example is shown that the proposed algorithm can completely reject the external electrical stimulation generated from a Van der Pol circuit.
This paper treats the question of robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle. We first present the solution of the global robust output regulation problem for output feedback system with nonlinear exosystem. Then we show that the robust control problem for the modified FitzHugh-Nagumo neuron model can be formulated as the global robust output regulation problem and the solvability conditions for the output regulation problem for the modified FitzHugh-Nagumo neuron model are all satisfied. Then we apply the obtained output regulation results to the control problem for modified FitzHugh-Nagumo neuron model. Finally, an output feedback control law is designed for the modified FitzHugh-Nagumo neuron model to achieve global stability of the closed-loop system in the presence of uncertain parameters and external stimulus. An example is shown that the proposed algorithm can completely reject the external electrical stimulation generated from a Van der Pol circuit.
Classification : 62A10, 93E12
Keywords: control theory; Lyapunov methods; internal model principle; modified FitzHugh--Nagumo model; Van der Pol circuit
@article{KYB_2011_47_4_a7,
     author = {Jiang, Yuan and Dai, Jiyang},
     title = {Robust control of chaos in modified {FitzHugh-Nagumo} neuron model under external electrical stimulation based on internal model principle},
     journal = {Kybernetika},
     pages = {612--629},
     year = {2011},
     volume = {47},
     number = {4},
     mrnumber = {2884864},
     zbl = {1227.93033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a7/}
}
TY  - JOUR
AU  - Jiang, Yuan
AU  - Dai, Jiyang
TI  - Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle
JO  - Kybernetika
PY  - 2011
SP  - 612
EP  - 629
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a7/
LA  - en
ID  - KYB_2011_47_4_a7
ER  - 
%0 Journal Article
%A Jiang, Yuan
%A Dai, Jiyang
%T Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle
%J Kybernetika
%D 2011
%P 612-629
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a7/
%G en
%F KYB_2011_47_4_a7
Jiang, Yuan; Dai, Jiyang. Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle. Kybernetika, Tome 47 (2011) no. 4, pp. 612-629. http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a7/

[1] Arcak, M., Kokotovic, P.: Nonlinear observers: A circle criteria design and robustness analysis. Automatica 37 (2001), 1923–1930. | DOI | MR

[2] Byrnes, C. I., Priscoli, F. D., Isidori, A.: Structurally stable output regulation of nonlinear systems. Automatica 33 (1997), 369–385. | DOI | MR | Zbl

[3] Chen, C., Ding, Z., Lennox, B.: Rejection of nonharmonic disturbances in nonlinear systems with semi-global stability. IEEE Trans. Circuits. Syst. II: Expr. Briefs 55 (2008), 1289–1293. | DOI

[4] Chen, Z., Huang, J.: Global robust output regulation for output feedback systems. IEEE Trans. Automat. Control 50 (2005), 117–121. | DOI | MR

[5] Chen, Z., Huang, J.: Robust output regulation with nonlinear exosystems. Automatica 41 (2005), 1447–1454. | DOI | MR | Zbl

[6] Davison, E. J.: The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Automat. Control 21 (1976), 25–34. | DOI | MR | Zbl

[7] Desoer, C. A., Lin, C. A.: Tracking and disturbance rejection of MIMO nonlinear systems with PI controller. IEEE Trans. Automat. Control 30 (1985), 861–867. | DOI | MR | Zbl

[8] Benedetto, M. D. Di: Synthesis of an internal model for nonlinear output regulation. Internat. J. Control 45 (1987), 1023–1034. | DOI | MR

[9] Che, Y. Q., Wang, J., Zhou, S. S., Deng, B.: Robust synchronization control of coupled chaotic neurons under external electrical stimulation. Chaos Solit. Fract. 40 (2009), 1333–1342. | MR | Zbl

[10] Ding, Z.: Global output regulation of uncertain nonlinear systems with exogenous signals. Automatica 37 (2001), 113–119. | DOI | MR | Zbl

[11] Ding, Z.: Output regulation of uncertain nonlinear systems with nonlinear exosystems. IEEE Trans. Automat. Control 51 (2006), 498–503. | DOI | MR

[12] Ding, Z.: Decentralized output regulation of large scale nonlinear systems with delay. Kybernetika. 45 (2009), 33–48. | MR | Zbl

[13] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 131–140. | DOI | MR | Zbl

[14] Francis, D. A., Wonham, W. M.: The internal model principle for linear multivariable regulators. Appl. Math. Optim. 2 (1975), 170–194. | DOI | MR | Zbl

[15] Huang, J., Chen, Z.: A general framework for tackling the output regulation problem. IEEE Trans. Automat. Control 49 (2004), 2203–2218. | DOI | MR

[16] Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: Systems biology. Ann. Rev. Genom, Hum. Genet. 2 (2001), 343–372. | DOI

[17] Gong, Q., Lin, W.: A note on global output regulation of nonlinear system in the output feedback form. IEEE Trans. Automat. Control 48 (2003), 1049–1054. | DOI | MR

[18] Huang, J.: Asymptotic tracking and disturbance rejection in uncertain nonlinear systems. IEEE Trans. Automat. Control 40 (1995), 1118–1122. | DOI | MR | Zbl

[19] Huang, J., Lin, C-F.: On a robust nonlinear servomechanism problem. IEEE Trans. Automat. Control. 39 (1994), 1510–1513. | DOI | MR | Zbl

[20] Huang, J., Rugh, W. J.: On a nonlinear multivariable servomechanism problem. Automatica 26 (1990), 963–972. | DOI | MR | Zbl

[21] Isidori, A.: Nonlinear Control Systems. 3rd eddition. Springer-Verlag, New York 1995. | MR | Zbl

[22] Johnson, C. D.: Accommodation of external disturbances in linear regulator and servomechanism problems. IEEE Trans. Automat. Control. 16 (1971), 635–644. | DOI

[23] Kitano, H.: Systems biology: A brief overview. Science 295 (2002), 1662–1664. | DOI

[24] Kürten, K. E., Clark, J. W.: Chaos in neural systems. Phys. Lett. A, 114 (1986), 413–418. | DOI | MR

[25] Lin, W., Qian, C.: Adaptive control of nonlinearly parameterized systems: the smooth case. IEEE Trans. Automat. Control. 47 (2002), 1249–1266. | DOI | MR

[26] Liu, S., Jiang, Y., Liu, P.: Rejection of nonharmonic disturbances in nonlinear systems. Kybernetika 46 (2010), 758–798. | MR | Zbl

[27] Marino, R., Tomei, P.: Nonlinear Control Design-Nonlinear, Robust and Adaptive. Prentice Hall, Englewood Cliffs, New York 1994.

[28] Mishra, D., Yadav, A., Ray, S., Kalra, P. K.: Nonlinear Dynamical Analysis on Coupled Modified FitzHugh–Nagumo Neuron Model. Lecture Notes in Computer Science. Springer Berlin – Heidelberg. 3496 (2005), 95–101. | Zbl

[29] Mishra, D., Yadav, A., Ray, S., Kalra, P. K.: Controlling synchronization of modified FitzHugh–Nagumo neurons under external electrical stimulation. NeuroQuantology 1 (2006), 50–67.

[30] Ramos, L. E., C̆elikovský, S., Kuc̆era, V.: Generalized output regulation problem for a class of nonlinear systems with nonautonomous exosystem. IEEE Trans. Automat. Control 49 (2004), 1737–1742. | DOI | MR

[31] Rinzel, J.: A formal classification of bursting mechanisms in excitable systems, in mathematical topics in population niology, morphogenesis and neurosciences. Lecture Notes in Biomath., Springer–Verlag, New York. 71 (1987), 267–281. | MR

[32] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.: A comparison of two fem-based methods for the solution of the nonlinear output regulation problem. Kybernetika 45 (2009), 427–444. | MR | Zbl

[33] Serrani, A., Isidori, A.: Global robust output regulation for a class of nonlinear systems. Syst. Control Lett. 39 (2000), 133–139. | DOI | MR | Zbl

[34] Sun, W., Huang, J.: Output regulation for a class of uncertain nonlinear systems with nonlinear exosystems and its application. Science in China, Ser. F: Information Sciences 52 (2009), 2172–2179. | MR | Zbl

[35] Venkatesh, K. V., Bhartiya, S., Ruhela, A.: Mulitple feedback loops are key to a robust dynamic performance of tryptophan regulation in Escherichia coli. FEBS Lett. 563, (2004), 234–240. | DOI

[36] Wang, J., Zhang, T., Deng, B.: Synchronization of FitzHugh–Nagumo neurons in external electrical stimulation via nonlinear control. Chaos Solit. Fract. 31 (2007), 30–38. | MR | Zbl

[37] Xi, Z., Ding, Z.: Global adaptive output regulation of a class of nonlinear systems with nonlinear exosystems. Automatica 43 (2007), 143–149. | DOI | MR | Zbl

[38] Xi, Z., Ding, Z.: Global decentralised output regulation for a class of large-scale nonlinear systems with nonlinear exosystem. IET Control. Theory Appl. 1 (2007), 1504–1511. | DOI | MR