Keywords: control theory; Lyapunov methods; internal model principle; modified FitzHugh--Nagumo model; Van der Pol circuit
@article{KYB_2011_47_4_a7,
author = {Jiang, Yuan and Dai, Jiyang},
title = {Robust control of chaos in modified {FitzHugh-Nagumo} neuron model under external electrical stimulation based on internal model principle},
journal = {Kybernetika},
pages = {612--629},
year = {2011},
volume = {47},
number = {4},
mrnumber = {2884864},
zbl = {1227.93033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a7/}
}
TY - JOUR AU - Jiang, Yuan AU - Dai, Jiyang TI - Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle JO - Kybernetika PY - 2011 SP - 612 EP - 629 VL - 47 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a7/ LA - en ID - KYB_2011_47_4_a7 ER -
%0 Journal Article %A Jiang, Yuan %A Dai, Jiyang %T Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle %J Kybernetika %D 2011 %P 612-629 %V 47 %N 4 %U http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a7/ %G en %F KYB_2011_47_4_a7
Jiang, Yuan; Dai, Jiyang. Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle. Kybernetika, Tome 47 (2011) no. 4, pp. 612-629. http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a7/
[1] Arcak, M., Kokotovic, P.: Nonlinear observers: A circle criteria design and robustness analysis. Automatica 37 (2001), 1923–1930. | DOI | MR
[2] Byrnes, C. I., Priscoli, F. D., Isidori, A.: Structurally stable output regulation of nonlinear systems. Automatica 33 (1997), 369–385. | DOI | MR | Zbl
[3] Chen, C., Ding, Z., Lennox, B.: Rejection of nonharmonic disturbances in nonlinear systems with semi-global stability. IEEE Trans. Circuits. Syst. II: Expr. Briefs 55 (2008), 1289–1293. | DOI
[4] Chen, Z., Huang, J.: Global robust output regulation for output feedback systems. IEEE Trans. Automat. Control 50 (2005), 117–121. | DOI | MR
[5] Chen, Z., Huang, J.: Robust output regulation with nonlinear exosystems. Automatica 41 (2005), 1447–1454. | DOI | MR | Zbl
[6] Davison, E. J.: The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Automat. Control 21 (1976), 25–34. | DOI | MR | Zbl
[7] Desoer, C. A., Lin, C. A.: Tracking and disturbance rejection of MIMO nonlinear systems with PI controller. IEEE Trans. Automat. Control 30 (1985), 861–867. | DOI | MR | Zbl
[8] Benedetto, M. D. Di: Synthesis of an internal model for nonlinear output regulation. Internat. J. Control 45 (1987), 1023–1034. | DOI | MR
[9] Che, Y. Q., Wang, J., Zhou, S. S., Deng, B.: Robust synchronization control of coupled chaotic neurons under external electrical stimulation. Chaos Solit. Fract. 40 (2009), 1333–1342. | MR | Zbl
[10] Ding, Z.: Global output regulation of uncertain nonlinear systems with exogenous signals. Automatica 37 (2001), 113–119. | DOI | MR | Zbl
[11] Ding, Z.: Output regulation of uncertain nonlinear systems with nonlinear exosystems. IEEE Trans. Automat. Control 51 (2006), 498–503. | DOI | MR
[12] Ding, Z.: Decentralized output regulation of large scale nonlinear systems with delay. Kybernetika. 45 (2009), 33–48. | MR | Zbl
[13] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 131–140. | DOI | MR | Zbl
[14] Francis, D. A., Wonham, W. M.: The internal model principle for linear multivariable regulators. Appl. Math. Optim. 2 (1975), 170–194. | DOI | MR | Zbl
[15] Huang, J., Chen, Z.: A general framework for tackling the output regulation problem. IEEE Trans. Automat. Control 49 (2004), 2203–2218. | DOI | MR
[16] Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: Systems biology. Ann. Rev. Genom, Hum. Genet. 2 (2001), 343–372. | DOI
[17] Gong, Q., Lin, W.: A note on global output regulation of nonlinear system in the output feedback form. IEEE Trans. Automat. Control 48 (2003), 1049–1054. | DOI | MR
[18] Huang, J.: Asymptotic tracking and disturbance rejection in uncertain nonlinear systems. IEEE Trans. Automat. Control 40 (1995), 1118–1122. | DOI | MR | Zbl
[19] Huang, J., Lin, C-F.: On a robust nonlinear servomechanism problem. IEEE Trans. Automat. Control. 39 (1994), 1510–1513. | DOI | MR | Zbl
[20] Huang, J., Rugh, W. J.: On a nonlinear multivariable servomechanism problem. Automatica 26 (1990), 963–972. | DOI | MR | Zbl
[21] Isidori, A.: Nonlinear Control Systems. 3rd eddition. Springer-Verlag, New York 1995. | MR | Zbl
[22] Johnson, C. D.: Accommodation of external disturbances in linear regulator and servomechanism problems. IEEE Trans. Automat. Control. 16 (1971), 635–644. | DOI
[23] Kitano, H.: Systems biology: A brief overview. Science 295 (2002), 1662–1664. | DOI
[24] Kürten, K. E., Clark, J. W.: Chaos in neural systems. Phys. Lett. A, 114 (1986), 413–418. | DOI | MR
[25] Lin, W., Qian, C.: Adaptive control of nonlinearly parameterized systems: the smooth case. IEEE Trans. Automat. Control. 47 (2002), 1249–1266. | DOI | MR
[26] Liu, S., Jiang, Y., Liu, P.: Rejection of nonharmonic disturbances in nonlinear systems. Kybernetika 46 (2010), 758–798. | MR | Zbl
[27] Marino, R., Tomei, P.: Nonlinear Control Design-Nonlinear, Robust and Adaptive. Prentice Hall, Englewood Cliffs, New York 1994.
[28] Mishra, D., Yadav, A., Ray, S., Kalra, P. K.: Nonlinear Dynamical Analysis on Coupled Modified FitzHugh–Nagumo Neuron Model. Lecture Notes in Computer Science. Springer Berlin – Heidelberg. 3496 (2005), 95–101. | Zbl
[29] Mishra, D., Yadav, A., Ray, S., Kalra, P. K.: Controlling synchronization of modified FitzHugh–Nagumo neurons under external electrical stimulation. NeuroQuantology 1 (2006), 50–67.
[30] Ramos, L. E., C̆elikovský, S., Kuc̆era, V.: Generalized output regulation problem for a class of nonlinear systems with nonautonomous exosystem. IEEE Trans. Automat. Control 49 (2004), 1737–1742. | DOI | MR
[31] Rinzel, J.: A formal classification of bursting mechanisms in excitable systems, in mathematical topics in population niology, morphogenesis and neurosciences. Lecture Notes in Biomath., Springer–Verlag, New York. 71 (1987), 267–281. | MR
[32] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.: A comparison of two fem-based methods for the solution of the nonlinear output regulation problem. Kybernetika 45 (2009), 427–444. | MR | Zbl
[33] Serrani, A., Isidori, A.: Global robust output regulation for a class of nonlinear systems. Syst. Control Lett. 39 (2000), 133–139. | DOI | MR | Zbl
[34] Sun, W., Huang, J.: Output regulation for a class of uncertain nonlinear systems with nonlinear exosystems and its application. Science in China, Ser. F: Information Sciences 52 (2009), 2172–2179. | MR | Zbl
[35] Venkatesh, K. V., Bhartiya, S., Ruhela, A.: Mulitple feedback loops are key to a robust dynamic performance of tryptophan regulation in Escherichia coli. FEBS Lett. 563, (2004), 234–240. | DOI
[36] Wang, J., Zhang, T., Deng, B.: Synchronization of FitzHugh–Nagumo neurons in external electrical stimulation via nonlinear control. Chaos Solit. Fract. 31 (2007), 30–38. | MR | Zbl
[37] Xi, Z., Ding, Z.: Global adaptive output regulation of a class of nonlinear systems with nonlinear exosystems. Automatica 43 (2007), 143–149. | DOI | MR | Zbl
[38] Xi, Z., Ding, Z.: Global decentralised output regulation for a class of large-scale nonlinear systems with nonlinear exosystem. IET Control. Theory Appl. 1 (2007), 1504–1511. | DOI | MR