Keywords: admissibility; Bayes estimator; truncated parameter spaces; squared-log error loss
@article{KYB_2011_47_4_a6,
author = {Mahmoudi, Eisa and Zakerzadeh, Hojatollah},
title = {An admissible estimator of a lower-bounded scale parameter under squared-log error loss function},
journal = {Kybernetika},
pages = {595--611},
year = {2011},
volume = {47},
number = {4},
mrnumber = {2884863},
zbl = {1227.62006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a6/}
}
TY - JOUR AU - Mahmoudi, Eisa AU - Zakerzadeh, Hojatollah TI - An admissible estimator of a lower-bounded scale parameter under squared-log error loss function JO - Kybernetika PY - 2011 SP - 595 EP - 611 VL - 47 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a6/ LA - en ID - KYB_2011_47_4_a6 ER -
Mahmoudi, Eisa; Zakerzadeh, Hojatollah. An admissible estimator of a lower-bounded scale parameter under squared-log error loss function. Kybernetika, Tome 47 (2011) no. 4, pp. 595-611. http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a6/
[1] Berry, J. C.: Minimax estimation of a restricted exponential location parameter. Statist. Decision 11 (1993), 307–316. | MR | Zbl
[2] Blyth, C. R.: Minimax statistical procesures and their admissibility. Ann. Math. Statist. 22 (1951), 22–42. | DOI | MR
[3] Brown, L.: Inadmissibility of the usual estimators of scale parameters in problems with uknown location and scale parameters. Ann. Math. Statist. 29(1) (1968), 29–48. | DOI | MR
[4] Ferguson, T. S.: Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York 1967. | MR | Zbl
[5] Hoaglin, D. C.: The small-sample variance of the Pitman location estimators. J. Amer. Statist. Assoc. 70 (1975), 880–888. | DOI | Zbl
[6] Jozani, M. Jafari, Nematollahi, N., Shafie, K.: An admissible minimax estimator of a bounded scale-parameter in a subclass of the exponential family under scale-invariant squared-error loss. Statist. Prob. Letter 60 (2002), 434–444. | MR
[7] Katz, W.: Admissible and minimax estimator of parameters in truncated space. Ann. Math. Statist. 32 (1961), 136–142. | DOI | MR
[8] Lehmann, E. L., Casella, G.: Theory of Point Estimation. Second edition. Springer-Verlag, John Wiley, New York 1998. | MR | Zbl
[9] Moors, J. J. A.: Estimation in Truncated Parameter Spaces. Ph.D Thesis, Tilburg University Tilburg, The Netherlands 1985.
[10] Moors, J. J. A., Houwelingen, J. C. van: Estimation of linear models with inequality restrictions. Statist. Neerlandica 47 (1993), 185–198. | DOI | MR
[11] Parsian, A., Nematollahi, N.: Estimation of scale parameter under entropy loss function. J. Statis. Plann. Infer. 52 (1996), 77–91. | DOI | MR | Zbl
[12] Pitman, E. J. J.: The estimation of location and scale parameters of a continuous population of any given form. Biometrika 30 (1938), 391–421.
[13] Pitman, E. J. J.: Some Basic Theory for Statistical Inference. Chapman Hall, London 1979. | MR | Zbl
[14] Rahman, M. S., Gupta, R. P.: Family of transformed chi-square distributions. Comm. Statist. Theory Methods 22 (1993), 135–146. | MR
[15] Robertson, T., Wright, F. T., Dijkstra, R. L.: Order Restricted Statistical Inference. John Wiley, New York 1988. | MR
[16] Farsipour, N. Sanjari, Zakerzadeh, H.: Estimation of a gamma scale parameter under asymmetric squared-log error loss. Comm. Statist. Theory Methods 34 (2005), 1–9. | MR
[17] Shao, P., Strawderman, W. E.: Improving on truncated linear estimates of exponential and gamma scale parameters. Canad. J. Statist. 24 (1996), 105–114. | DOI | MR | Zbl
[18] Stein, C.: The admissibility of Pitman’s estimator for a single location parameter. Ann. Math. Statist. 30 (1959), 970–979. | DOI | MR
[19] Eeden, C. van: Minimax estimation of am lower-bounded scale parameter of a gamma distribution for scale invariant squared-error loss. Canada. J. Statist. 23 (1995), 245–256. | DOI | MR
[20] Eeden, C. van: Minimax estimation of a lower-bounded scale-parameter of an F-distribution. Statist. Prob. Lett. 46 (2000), 283–286. | DOI
[21] Eeden, C. van, Zidek, J. V.: Group-Bayes estimation of the exponential mean: A retrospective view of the wald theory. In: Statistical Decision Theory and Related Topics, V (S. S. Gupta and J. Berger, eds.), Springer, Berlin 1994, pp. 35–49. | MR
[22] Eeden, C. van, Zidek, J. V.: Group-Bayes estimation of the exponential mean: A preposterior analysis. Test 3 (1994), 125–143. | DOI | MR
[23] Eeden, C. van, Zidek, J. V.: Correction to Group-Bayes estimation of the exponential mean: A preposterior analysis. Test 3 (1994), 247. | DOI | MR