Keywords: mixture model; Bayesian estimation; approximation; clustering; classification
@article{KYB_2011_47_4_a5,
author = {Nagy, Ivan and Suzdaleva, Evgenia and K\'arn\'y, Miroslav},
title = {Bayesian estimation of mixtures with dynamic transitions and known component parameters},
journal = {Kybernetika},
pages = {572--594},
year = {2011},
volume = {47},
number = {4},
mrnumber = {2884862},
zbl = {1227.93114},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a5/}
}
TY - JOUR AU - Nagy, Ivan AU - Suzdaleva, Evgenia AU - Kárný, Miroslav TI - Bayesian estimation of mixtures with dynamic transitions and known component parameters JO - Kybernetika PY - 2011 SP - 572 EP - 594 VL - 47 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a5/ LA - en ID - KYB_2011_47_4_a5 ER -
Nagy, Ivan; Suzdaleva, Evgenia; Kárný, Miroslav. Bayesian estimation of mixtures with dynamic transitions and known component parameters. Kybernetika, Tome 47 (2011) no. 4, pp. 572-594. http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a5/
[1] Bernardo, J. M.: Expected information as expected utility. Ann. Statist. 7 (1979), 3, 686–690. | DOI | MR
[2] Böhm, J., Kárný, M.: Transformation of user’s knowledge into initial values for identification. In: Preprints DYCOMANS Workshop Industrial Control and Management Methods: Theory and Practice (M. Součková and J. Böhm, eds.), ÚTIA AV ČR, Prague 1995, pp. 17–24.
[3] Chen, W., Jovanis, P.: Method for identifying factors contributing to driver-injury severity in traffic crashes. Highway And Traffic Safety: Crash Data, Analysis Tools, And Statistical Methods 1717 (2000), 1–9.
[4] Chinnaswamy, G., Chirwa, E., Nammi, S., Nowpada, S., Chen, T., Mao, M.: Benchmarking and accident characteristics of flat-fronted commercial vehicles with respect to pedestrian safety. Internat. J. Crashworthiness 12 (2007), 279–291. | DOI
[5] Dempster, A. P., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B (Methodological) 39 (1977), 1, 1–38. | MR | Zbl
[6] Hamilton, J. D., Susmel, R.: Autoregressive conditional heteroskedasticity and changes in regime. J. Econometrics 64 (1994), 307–333. | DOI | Zbl
[7] Haykin, S.: Neural Networks: A Comprehensive Foundation. MacMillan, New York 1994. | Zbl
[8] Wang, Jianyong, Zhang, Yuzhou, Zhou, Lizhu, Karypis, G. , Aggarwal, Charu C.: Contour: An efficient algorithm for discovering discriminating subsequences. In: Data Mining and Knowledge Discovery, Springer 18 (2009), 1, pp. 1–29. | MR
[9] Kárný, M.: Tools for computer-aided design of adaptive controllers. IEE Control Theory Appl. 150 (2003), 6, 643.
[10] Kárný, M., Böhm, J., Guy, T. V., Jirsa, L., Nagy, I., Nedoma, P., Tesař, L.: Optimized Bayesian Dynamic Advising: Theory and Algorithms. Springer, London 2005.
[11] Kárný, M., Kadlec, J., Sutanto, E. L.: Quasi-Bayes estimation applied to normal mixture. in In: Preprints 3rd European IEEE Workshop on Computer-Intensive Methods in Control and Data Processing (J. Rojíček, M. Valečková, M. Kárný, and K. Warwick, eds.), ÚTIA AV ČR, Prague 1998, pp. 77–82.
[12] Kárný, M., Nagy, I., Novovičová, J.: Mixed-data multi-modelling for fault detection and isolation. Internat. J. Adaptive Control Signal Process. 16 (2002), 1, 61–83. | DOI | Zbl
[13] Kerridge, D. F.: Inaccuracy and Inference. J. Royal Statist. Soc. Ser. B (Methodological) 23 (1961), 1, 184–194. | MR | Zbl
[14] Kulhavý, R.: A Bayes-closed approximation of recursive non-linear estimation. Internat. J. Adaptive Control Signal Process. 4 (1990), 271–285. | DOI
[15] Ljung, L.: System Identification: Theory for the User. Prentice-Hall, London 1987. | Zbl
[16] Murray-Smith, R., Johansen, T.: Multiple Model Approaches to Modelling and Control. Taylor &Francis, London 1997. | MR
[17] Oppenheim, A., Wilsky, A.: Signals and Systems. Englewood Clifts, Jersey 1983.
[18] Opper, M., Saad, D.: Advanced Mean Field Methods: Theory and Practice. The MIT Press, Cambridge 2001. | MR | Zbl
[19] Qu, H. B., Hu, B. G.: Variational learning for Generalized Associative Functional Networks in modeling dynamic process of plant growth. Ecological Informatics 4 (2009), 3, 163–176. | DOI
[20] Roberts, W. A.: Convex Functions. Academic Press, New York 1973. | MR | Zbl
[21] Sander, J., Ester, M., Kriegel, H.-P., Xu, X.: Density-based clustering in spatial databases: The algorithm gdbscan and its applications. In: Data Mining and Knowledge Discovery, Springer, 2 (1998), 2, pp. 169–194.
[22] Titterington, D., Smith, A., Makov, U.: Statistical Analysis of Finite Mixtures. John Wiley, New York 1985. | MR
[23] Xu, Xiaowei, Jäger, J., Kriegel, H.-P.: A fast parallel clustering algorithm for large spatial databases. In: Data Mining and Knowledge Discovery, Springer, 3 (1999), 3, pp. 263–290.
[24] Zhang, T., Ramakrishnan, R., Livny, M.: Birch: A new data clustering algorithm and its applications. In: Data Mining and Knowledge Discovery, Springer, 1 (1997), 2, pp. 141–182.