Keywords: bottleneck transportation; random transportation time; flexible supply and demand quantity; non-dominated transportation pattern
@article{KYB_2011_47_4_a4,
author = {Ge, Yue and Ishii, Hiroaki},
title = {Stochastic bottleneck transportation problem with flexible supply and demand quantity},
journal = {Kybernetika},
pages = {560--571},
year = {2011},
volume = {47},
number = {4},
mrnumber = {2884861},
zbl = {1228.90136},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a4/}
}
Ge, Yue; Ishii, Hiroaki. Stochastic bottleneck transportation problem with flexible supply and demand quantity. Kybernetika, Tome 47 (2011) no. 4, pp. 560-571. http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a4/
[1] Ahuja, R. K., Orlin, J. B., Tarjan, R. E.: Improved time bounds for the maximum flow problem. SIAM J. Comput. 18 (1989), 939–954. | DOI | MR | Zbl
[2] Charnes, A., Cooper, W. W.: The stepping stone method of explaining linear programming calculations in transportation problems. Management Sci. 1 (1954), 49–69. | DOI | MR | Zbl
[3] Chen, M. H., Ishii, H., Wu, C. X.: Transportation problems on a fuzzy network. Internat. J. Innovative Computing, Information and Control 4 (2008), 1105–1109.
[4] Dantzig, G. B.: Application of the simplex method to a transportation problem. In: Activity Analysis of Production and Allocation, Chapter 23, Cowles Commission Monograph 13. Wiley, New York 1951. | MR | Zbl
[5] Ford, L. R., Jr., Fulkerson, D. R.: Solving the transportation problem. Management Sci. 3 (1956), 24–32. | DOI | MR
[6] Garfinkel, R. S., Rao, M. R.: The bottleneck transportation problem. Naval Res. Logist. Quart. 18 (1971), 465–472. | DOI | MR
[7] Geetha, S., Nair, K. P. K.: A stochastic bottleneck transportation problem. J. Oper. Res. Soc. 45 (1994), 583–588. | Zbl
[8] Hammer, P. L.: Time minimizing transportation problem. Naval Res. Logist. Quart. 16 (1969), 345–357. | MR
[9] Hitchcock, F. L.: The distribution of a product from several sources to numerous localities. J. Math. Phys. 20 (1941), 224–230. | MR | Zbl
[10] Ishii, H.: Competitive transportation problem. Central Europ. J. Oper. Res. 12 (2004), 71–78. | MR
[11] Ishii, H., Ge, Y.: Fuzzy transportation problem with random transportation costs. Scient. Math. Japon. 70 (2009), 151–157. | MR | Zbl
[12] Ishii, H., Tada, M., Nishida, T.: Fuzzy transportation problem. J. Japan Soc. Fuzzy Theory and System 2 (1990), 79–84. | Zbl
[13] Lin, F. T., Tsai, T. R.: A two-stage genetic algorithm for solving the transportation problem with fuzzy demands and fuzzy supplies. Internat. J. Innov. Comput. Inform. Control 5 (2009), 4775–4785.
[14] Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Industr. Appl. Math. 5 (1957), 32–38. | DOI | MR | Zbl
[15] Srinivasan, V., Thompson, G. L.: An operator theory of parametric programming for the transportation-I. Naval Res. Logist. Quart. 19 (1972), 205–226. | DOI | MR
[16] Szwarc, W.: Some remarks on the time transportation problem. Naval Res. Logist. Quart. 18 (1971), 473–485. | DOI | MR
[17] Tada, M., Ishii, H.: An integer fuzzy transportation Problem. Comput. Math. Appl. 31 (1996), 71–87. | DOI | MR | Zbl
[18] Tada, M., Ishii, H., Nishida, T.: Fuzzy transportation problem with integral flow. Math. Japon. 35 (1990), 335–341. | MR | Zbl