Keywords: lattice effect algebra; MV algebra; observable; state; Markov kernel; weak Markov kernel; smearing; generalized observable
@article{KYB_2011_47_4_a3,
author = {Jen\v{c}ov\'a, Anna and Pulmannov\'a, Silvia and Vincekov\'a, Elena},
title = {Observables on $\sigma ${-MV} algebras and $\sigma $-lattice effect algebras},
journal = {Kybernetika},
pages = {541--559},
year = {2011},
volume = {47},
number = {4},
mrnumber = {2884860},
zbl = {1237.81008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a3/}
}
TY - JOUR AU - Jenčová, Anna AU - Pulmannová, Silvia AU - Vinceková, Elena TI - Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras JO - Kybernetika PY - 2011 SP - 541 EP - 559 VL - 47 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a3/ LA - en ID - KYB_2011_47_4_a3 ER -
Jenčová, Anna; Pulmannová, Silvia; Vinceková, Elena. Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras. Kybernetika, Tome 47 (2011) no. 4, pp. 541-559. http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a3/
[1] Busch, P., Lahti, P. J., Mittelstaedt, P.: The Quantum Theory of Measurement. Lecture Notes in Phys., Springer-Verlag, Berlin 1991. | MR
[2] Butnariu, D., Klement, E.: Triangular-norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 162 (1991), 111–143. | DOI | MR | Zbl
[3] Barbieri, G., Weber, H.: Measures on clans and on MV-algebras. In: Handbook of Measure Theory, vol. II. (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 911–945. | MR | Zbl
[4] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht 2000. | MR
[5] Chang, C.: Algebraic analysis of many-valued logic. Trans. Amer. Math. Soc. 89 (1959), 74–80. | MR
[6] Chovanec, F., Kôpka, F.: D-lattices. Internat. J. Thoer. Phys. 34 (1995), 1297–1302. | DOI | MR
[7] Dvurečenskij, A.: Loomis–Sikorski theorem for $\sigma $-complete MV-algebras and $\ell $-groups. J. Austral. Math. Soc. Ser A 68 (2000), 261–277. | DOI | MR
[8] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht 2000. | MR
[9] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. | MR
[10] Foulis, D. J.: Spectral resolutions in a Rickart comgroup. Rep. Math. Phys. 54 (2004), 229–250. | DOI | MR
[11] Giuntini, R., Greuling, R.: Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931–945. | DOI | MR
[12] Goodearl, K. R.: Partially ordered abelian groups with interpolation. Mat. Surveys Monographs 20, AMS Providence, 1986. | MR | Zbl
[13] Holevo, A. S.: An analogue of the theory of statistical decisions in noncommutative probability theory. Trans. Mosc. Math. Soc. 26 (1972), 133–147. | MR
[14] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. Busefal 80 (1999), 24–29.
[15] Jenčová, A., Pulmannová, S., Vinceková, E.: Sharp and fuzzy observables on effect algebras. Internat. J. Theor. Phys. 47 (2008), 1, 125–148. | DOI | Zbl
[16] Jenčová, A., Pulmannová, S.: How sharp are PV measures? Rep. Math. Phys. 59 (2007), 257–266. | DOI | MR
[17] Jenčová, A., Pulmannová, S.: Characterizations of commutative POV measures. Found. Phys. 39 (2009), 613–124. | DOI | MR | Zbl
[18] Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44 (1994), 21–34. | MR
[19] Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. | DOI | MR
[20] Mundici, D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras. Advan. Appl. Math. 22 (1999), 227–248. | DOI | MR | Zbl
[21] Mundici, D.: Averaging the truth-value in in Łukasziewicz logic. Studia Logica 55 (1995), 113–127. | DOI | MR
[22] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht 1991. | MR
[23] Pulmannová, S.: A spectral theorem for sigma-MV algebas. Kybernetika 41 (2005), 361–374.
[24] Pulmannová, S.: Spectral resolutions in Dedekind $\sigma $-complete $\ell $-groups. J. Math. Anal. Appl. 309 (2005), 322–335. | DOI | MR | Zbl
[25] Pulmannová, S.: Spectral resolutions for $\sigma $-complete lattice effect algebras. Math. Slovaca 56 (2006), 555–571. | MR | Zbl
[26] Pulmannová, S.: Sharp and unsharp observables on $\sigma $-MV algebras—A comparison with the Hilbert space approach. Fuzzy Sets and Systems 159 (2008), 3065–3077. | MR | Zbl
[27] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Kluwer, Dordrecht – Ister Science, Bratislava 1997. | MR
[28] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. J. Theor. Phys. 39 (2000), 231–237. | DOI | MR
[29] Štepán, J.: Probability Theory. (Teorie pravděpodobnosti. (In Czech.) Academia, Praha 1987.
[30] Strasser, H.: Mathematical Theory of Statistics. W. De Gruyter, Berlin – New York 1985. | MR | Zbl
[31] Varadarajan, V. S.: Geometry of Quantum Theory. Springer-Verlag, Berlin 1985. | MR | Zbl