Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras
Kybernetika, Tome 47 (2011) no. 4, pp. 541-559 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Effect algebras were introduced as abstract models of the set of quantum effects which represent sharp and unsharp properties of physical systems and play a basic role in the foundations of quantum mechanics. In the present paper, observables on lattice ordered $\sigma$-effect algebras and their “smearings” with respect to (weak) Markov kernels are studied. It is shown that the range of any observable is contained in a block, which is a $\sigma$-MV algebra, and every observable is defined by a smearing of a sharp observable, which is obtained from generalized Loomis-Sikorski theorem for $\sigma$-MV algebras. Generalized observables with the range in the set of sharp real observables are studied and it is shown that they contain all smearings of observables.
Effect algebras were introduced as abstract models of the set of quantum effects which represent sharp and unsharp properties of physical systems and play a basic role in the foundations of quantum mechanics. In the present paper, observables on lattice ordered $\sigma$-effect algebras and their “smearings” with respect to (weak) Markov kernels are studied. It is shown that the range of any observable is contained in a block, which is a $\sigma$-MV algebra, and every observable is defined by a smearing of a sharp observable, which is obtained from generalized Loomis-Sikorski theorem for $\sigma$-MV algebras. Generalized observables with the range in the set of sharp real observables are studied and it is shown that they contain all smearings of observables.
Classification : 03G12, 81P10, 81P15
Keywords: lattice effect algebra; MV algebra; observable; state; Markov kernel; weak Markov kernel; smearing; generalized observable
@article{KYB_2011_47_4_a3,
     author = {Jen\v{c}ov\'a, Anna and Pulmannov\'a, Silvia and Vincekov\'a, Elena},
     title = {Observables on $\sigma ${-MV} algebras and $\sigma $-lattice effect algebras},
     journal = {Kybernetika},
     pages = {541--559},
     year = {2011},
     volume = {47},
     number = {4},
     mrnumber = {2884860},
     zbl = {1237.81008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a3/}
}
TY  - JOUR
AU  - Jenčová, Anna
AU  - Pulmannová, Silvia
AU  - Vinceková, Elena
TI  - Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras
JO  - Kybernetika
PY  - 2011
SP  - 541
EP  - 559
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a3/
LA  - en
ID  - KYB_2011_47_4_a3
ER  - 
%0 Journal Article
%A Jenčová, Anna
%A Pulmannová, Silvia
%A Vinceková, Elena
%T Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras
%J Kybernetika
%D 2011
%P 541-559
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a3/
%G en
%F KYB_2011_47_4_a3
Jenčová, Anna; Pulmannová, Silvia; Vinceková, Elena. Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras. Kybernetika, Tome 47 (2011) no. 4, pp. 541-559. http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a3/

[1] Busch, P., Lahti, P. J., Mittelstaedt, P.: The Quantum Theory of Measurement. Lecture Notes in Phys., Springer-Verlag, Berlin 1991. | MR

[2] Butnariu, D., Klement, E.: Triangular-norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 162 (1991), 111–143. | DOI | MR | Zbl

[3] Barbieri, G., Weber, H.: Measures on clans and on MV-algebras. In: Handbook of Measure Theory, vol. II. (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 911–945. | MR | Zbl

[4] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht 2000. | MR

[5] Chang, C.: Algebraic analysis of many-valued logic. Trans. Amer. Math. Soc. 89 (1959), 74–80. | MR

[6] Chovanec, F., Kôpka, F.: D-lattices. Internat. J. Thoer. Phys. 34 (1995), 1297–1302. | DOI | MR

[7] Dvurečenskij, A.: Loomis–Sikorski theorem for $\sigma $-complete MV-algebras and $\ell $-groups. J. Austral. Math. Soc. Ser A 68 (2000), 261–277. | DOI | MR

[8] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht 2000. | MR

[9] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. | MR

[10] Foulis, D. J.: Spectral resolutions in a Rickart comgroup. Rep. Math. Phys. 54 (2004), 229–250. | DOI | MR

[11] Giuntini, R., Greuling, R.: Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931–945. | DOI | MR

[12] Goodearl, K. R.: Partially ordered abelian groups with interpolation. Mat. Surveys Monographs 20, AMS Providence, 1986. | MR | Zbl

[13] Holevo, A. S.: An analogue of the theory of statistical decisions in noncommutative probability theory. Trans. Mosc. Math. Soc. 26 (1972), 133–147. | MR

[14] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. Busefal 80 (1999), 24–29.

[15] Jenčová, A., Pulmannová, S., Vinceková, E.: Sharp and fuzzy observables on effect algebras. Internat. J. Theor. Phys. 47 (2008), 1, 125–148. | DOI | Zbl

[16] Jenčová, A., Pulmannová, S.: How sharp are PV measures? Rep. Math. Phys. 59 (2007), 257–266. | DOI | MR

[17] Jenčová, A., Pulmannová, S.: Characterizations of commutative POV measures. Found. Phys. 39 (2009), 613–124. | DOI | MR | Zbl

[18] Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44 (1994), 21–34. | MR

[19] Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. | DOI | MR

[20] Mundici, D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras. Advan. Appl. Math. 22 (1999), 227–248. | DOI | MR | Zbl

[21] Mundici, D.: Averaging the truth-value in in Łukasziewicz logic. Studia Logica 55 (1995), 113–127. | DOI | MR

[22] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht 1991. | MR

[23] Pulmannová, S.: A spectral theorem for sigma-MV algebas. Kybernetika 41 (2005), 361–374.

[24] Pulmannová, S.: Spectral resolutions in Dedekind $\sigma $-complete $\ell $-groups. J. Math. Anal. Appl. 309 (2005), 322–335. | DOI | MR | Zbl

[25] Pulmannová, S.: Spectral resolutions for $\sigma $-complete lattice effect algebras. Math. Slovaca 56 (2006), 555–571. | MR | Zbl

[26] Pulmannová, S.: Sharp and unsharp observables on $\sigma $-MV algebras—A comparison with the Hilbert space approach. Fuzzy Sets and Systems 159 (2008), 3065–3077. | MR | Zbl

[27] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Kluwer, Dordrecht – Ister Science, Bratislava 1997. | MR

[28] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. J. Theor. Phys. 39 (2000), 231–237. | DOI | MR

[29] Štepán, J.: Probability Theory. (Teorie pravděpodobnosti. (In Czech.) Academia, Praha 1987.

[30] Strasser, H.: Mathematical Theory of Statistics. W. De Gruyter, Berlin – New York 1985. | MR | Zbl

[31] Varadarajan, V. S.: Geometry of Quantum Theory. Springer-Verlag, Berlin 1985. | MR | Zbl