Keywords: multivariate RCA models; parameter estimation; asymptotic variance matrix
@article{KYB_2011_47_4_a0,
author = {Pr\'a\v{s}kov\'a, Zuzana and Van\v{e}\v{c}ek, Pavel},
title = {On a class of estimators in a multivariate {RCA(1)} model},
journal = {Kybernetika},
pages = {501--518},
year = {2011},
volume = {47},
number = {4},
mrnumber = {2884857},
zbl = {1226.62084},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a0/}
}
Prášková, Zuzana; Vaněček, Pavel. On a class of estimators in a multivariate RCA(1) model. Kybernetika, Tome 47 (2011) no. 4, pp. 501-518. http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a0/
[1] Aue, A., Horváth, L., Steinebach, J.: Estimation in random coefficient autoregressive models. J. Time Ser. Anal. 27 (2006), 60–67. | MR | Zbl
[2] Hwang, S. Y., Basawa, I. V.: Parameter estimation for generalized random coefficient autoregressive processes. J. Statist. Plann. Inference 68 (1998), 323–337. | DOI | MR | Zbl
[3] Berkes, I., Horváth, L., Ling, S.: Estimation in nonstationary random coefficient autoregressive models. J. Time Ser. Anal. 30 (2009), 395–416. | DOI | MR | Zbl
[4] Billingsley, P.: The Lindeberg–Lévy theorem for martingales. Proc. Amer. Math. Soc. 12 (1961), 788–792. | MR | Zbl
[5] Brandt, A.: The stochastic equation $Y_{n+1} = A_n Y_n + B_n$ with stationary coefficients. Adv. Appl. Probab. 18 (1986), 211–220. | DOI | MR
[6] Bougerol, P., Picard, N.: Strict stationarity of generalized autoregressive processes. Ann. Probab. 20 (1992), 1714–1730. | DOI | MR | Zbl
[7] Davidson, J.: Stochastic Limit Theory. Advanced Texts in Econometrics. Oxford University Press, Oxford 1994. | MR
[8] Feigin, P. D., Tweedie, R. L.: Random coefficient autoregressive processes: A Markov chain analysis of stationarity and finiteness of moments. J. Time Ser. Anal. 6 (1985), 1–14. | DOI | MR | Zbl
[9] Janečková, H., Prášková, Z.: CWLS and ML estimates in a heteroscedastic RCA(1) model. Statist. Decisions 22 (2004), 245–259. | DOI | MR | Zbl
[10] Koul, H. L., Schick, A.: Adaptive estimation in a random coefficient autoregressive model. Ann. Statist. 24 (1996), 1025–1052. | DOI | MR | Zbl
[11] Nicholls, D. F., Quinn, B. G.: Random coefficient autoregressive models: An introduction. Lecture Notes in Statistics 11, Springer, New York 1982. | DOI | MR | Zbl
[12] Schick, A.: $\sqrt{n}$-consistent estimation in a random coefficient autoregressive model. Austral. J. Statist. 38 (1996), 155–160. | DOI | MR
[13] Schott, J.: Matrix Analysis for Statistics. Wiley Series in Probability and Statistics, Wiley, New York 1996. | MR
[14] Vaněček, P.: Rate of convergence for a class of RCA estimators. Kybernetika 6 (2006), 698–709. | Zbl
[15] Vaněček, P.: Estimators of multivariate RCA models. In: Bull. Internat. Statistical Institute LXII (M. I. Gomes at al., eds.), Instituto Nacional de Estatística, Lisbon 2007, pp. 4027–4030.
[16] Vaněček, P.: Estimation of Random Coefficient Autoregressive Models. PhD Thesis, Charles University, Prague 2008.