On a class of estimators in a multivariate RCA(1) model
Kybernetika, Tome 47 (2011) no. 4, pp. 501-518 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This work deals with a multivariate random coefficient autoregressive model (RCA) of the first order. A class of modified least-squares estimators of the parameters of the model, originally proposed by Schick for univariate first-order RCA models, is studied under more general conditions. Asymptotic behavior of such estimators is explored, and a lower bound for the asymptotic variance matrix of the estimator of the mean of random coefficient is established. Finite sample properties are demonstrated in a small simulation study.
This work deals with a multivariate random coefficient autoregressive model (RCA) of the first order. A class of modified least-squares estimators of the parameters of the model, originally proposed by Schick for univariate first-order RCA models, is studied under more general conditions. Asymptotic behavior of such estimators is explored, and a lower bound for the asymptotic variance matrix of the estimator of the mean of random coefficient is established. Finite sample properties are demonstrated in a small simulation study.
Classification : 60F05, 60G10, 60G46, 62M10
Keywords: multivariate RCA models; parameter estimation; asymptotic variance matrix
@article{KYB_2011_47_4_a0,
     author = {Pr\'a\v{s}kov\'a, Zuzana and Van\v{e}\v{c}ek, Pavel},
     title = {On a class of estimators in a multivariate {RCA(1)} model},
     journal = {Kybernetika},
     pages = {501--518},
     year = {2011},
     volume = {47},
     number = {4},
     mrnumber = {2884857},
     zbl = {1226.62084},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a0/}
}
TY  - JOUR
AU  - Prášková, Zuzana
AU  - Vaněček, Pavel
TI  - On a class of estimators in a multivariate RCA(1) model
JO  - Kybernetika
PY  - 2011
SP  - 501
EP  - 518
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a0/
LA  - en
ID  - KYB_2011_47_4_a0
ER  - 
%0 Journal Article
%A Prášková, Zuzana
%A Vaněček, Pavel
%T On a class of estimators in a multivariate RCA(1) model
%J Kybernetika
%D 2011
%P 501-518
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a0/
%G en
%F KYB_2011_47_4_a0
Prášková, Zuzana; Vaněček, Pavel. On a class of estimators in a multivariate RCA(1) model. Kybernetika, Tome 47 (2011) no. 4, pp. 501-518. http://geodesic.mathdoc.fr/item/KYB_2011_47_4_a0/

[1] Aue, A., Horváth, L., Steinebach, J.: Estimation in random coefficient autoregressive models. J. Time Ser. Anal. 27 (2006), 60–67. | MR | Zbl

[2] Hwang, S. Y., Basawa, I. V.: Parameter estimation for generalized random coefficient autoregressive processes. J. Statist. Plann. Inference 68 (1998), 323–337. | DOI | MR | Zbl

[3] Berkes, I., Horváth, L., Ling, S.: Estimation in nonstationary random coefficient autoregressive models. J. Time Ser. Anal. 30 (2009), 395–416. | DOI | MR | Zbl

[4] Billingsley, P.: The Lindeberg–Lévy theorem for martingales. Proc. Amer. Math. Soc. 12 (1961), 788–792. | MR | Zbl

[5] Brandt, A.: The stochastic equation $Y_{n+1} = A_n Y_n + B_n$ with stationary coefficients. Adv. Appl. Probab. 18 (1986), 211–220. | DOI | MR

[6] Bougerol, P., Picard, N.: Strict stationarity of generalized autoregressive processes. Ann. Probab. 20 (1992), 1714–1730. | DOI | MR | Zbl

[7] Davidson, J.: Stochastic Limit Theory. Advanced Texts in Econometrics. Oxford University Press, Oxford 1994. | MR

[8] Feigin, P. D., Tweedie, R. L.: Random coefficient autoregressive processes: A Markov chain analysis of stationarity and finiteness of moments. J. Time Ser. Anal. 6 (1985), 1–14. | DOI | MR | Zbl

[9] Janečková, H., Prášková, Z.: CWLS and ML estimates in a heteroscedastic RCA(1) model. Statist. Decisions 22 (2004), 245–259. | DOI | MR | Zbl

[10] Koul, H. L., Schick, A.: Adaptive estimation in a random coefficient autoregressive model. Ann. Statist. 24 (1996), 1025–1052. | DOI | MR | Zbl

[11] Nicholls, D. F., Quinn, B. G.: Random coefficient autoregressive models: An introduction. Lecture Notes in Statistics 11, Springer, New York 1982. | DOI | MR | Zbl

[12] Schick, A.: $\sqrt{n}$-consistent estimation in a random coefficient autoregressive model. Austral. J. Statist. 38 (1996), 155–160. | DOI | MR

[13] Schott, J.: Matrix Analysis for Statistics. Wiley Series in Probability and Statistics, Wiley, New York 1996. | MR

[14] Vaněček, P.: Rate of convergence for a class of RCA estimators. Kybernetika 6 (2006), 698–709. | Zbl

[15] Vaněček, P.: Estimators of multivariate RCA models. In: Bull. Internat. Statistical Institute LXII (M. I. Gomes at al., eds.), Instituto Nacional de Estatística, Lisbon 2007, pp. 4027–4030.

[16] Vaněček, P.: Estimation of Random Coefficient Autoregressive Models. PhD Thesis, Charles University, Prague 2008.