Keywords: image restoration; blind deconvolution; deblurring; spatially varying blur
@article{KYB_2011_47_3_a8,
author = {\v{S}orel, Michal and \v{S}roubek, Filip and Flusser, Jan},
title = {Multichannel deblurring of digital images},
journal = {Kybernetika},
pages = {439--454},
year = {2011},
volume = {47},
number = {3},
mrnumber = {2857197},
zbl = {1217.94020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_3_a8/}
}
Šorel, Michal; Šroubek, Filip; Flusser, Jan. Multichannel deblurring of digital images. Kybernetika, Tome 47 (2011) no. 3, pp. 439-454. http://geodesic.mathdoc.fr/item/KYB_2011_47_3_a8/
[1] Ahmed, M., Farag, A.: Non-metric calibration of camera lens distortion. In: Proc. Internat. Conf. of Image Processing 2001, Vol. 2, pp. 157–160.
[2] Banham, M. R., Katsaggelos, A. K.: Digital image restoration. IEEE Signal Process. Mag. 14 (1997), 2, 24–41. | DOI
[3] Bar, L., Sochen, N. A., Kiryati, N.: Restoration of images with piecewise space-variant blur. In: SSVM 2007, pp. 533–544.
[4] Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. Trans. Image Process. 18 (2009), 11, 2419–2434. | DOI | MR
[5] Ben-Ezra, M., Lin, Z., Wilburn, B.: Penrose pixels super-resolution in the detector layout domain. In: Proc. IEEE Internat. Conf. Computer Vision 2007, pp. 1–8.
[6] Favaro, P., Burger, M., Soatto, S.: Scene and motion reconstruction from defocus and motion-blurred images via anisothropic diffusion. In: ECCV 2004 (T. Pajdla and J. Matas, eds.), Lecture Notes in Comput. Sci. 3021, Springer Verlag, Berlin – Heidelberg 2004, pp. 257–269.
[7] Favaro, P., Soatto, S.: A variational approach to scene reconstruction and image segmentation from motion-blur cues. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition 2004, Vol. 1, pp. 631–637.
[8] Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., Freeman, W. T.: Removing camera shake from a single photograph. ACM Trans. Graph. 25 (2006), 3, 787–794. | DOI
[9] Heeger, D. J., Jepson, A. D.: Subspace methods for recovering rigid motion. Internat. J. Computer Vision 7 (1992), 2, 95–117. | DOI
[10] Levin, A.: Blind motion deblurring using image statistics. In: NIPS 2006, pp. 841–848.
[11] Levin, A., Fergus, R., Durand, F., Freeman, W. T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26 (2007), 3, 70. | DOI
[12] Levin, A., Sand, P., Cho, T. S., Durand, F., Freeman, W. T.: Motion-invariant photography. In: SIGGRAPH ’08: ACM SIGGRAPH 2008 Papers, ACM, New York 2008, pp. 1–9.
[13] Lim, S. H., Silverstein, A. D.: Method for Deblurring an Image. US Patent Application, Pub. No. US2006/0187308 A1, 2006.
[14] Nagy, J. G., O’Leary, D. P.: Restoring images degraded by spatially variant blur. SIAM J. Sci. Comput. 19 (1998), 4, 1063–1082. | DOI | MR
[15] Rajagopalan, A. N., Chaudhuri, S.: An MRF model-based approach to simultaneous recovery of depth and restoration from defocused images. IEEE Trans. Pattern Anal. Mach. Intell. 21 (1999), 7, 577–589. | DOI
[16] Rudin, L. I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60 (1992), 259–268. | DOI | Zbl
[17] Šroubek, F., Flusser, J.: Multichannel blind iterative image restoration. IEEE Trans. Image Process. 12 (2003), 9, 1094–1106. | DOI | MR
[18] Šroubek, F., Flusser, J.: Multichannel blind deconvolution of spatially misaligned images. IEEE Trans. Image Process. 14 (2005), 7, 874–883. | DOI | MR
[19] Tico, M., Trimeche, M., Vehvilainen, M.: Motion blur identification based on differently exposed images. In: Proc. IEEE Internat. Conf. Image Processing 2006, pp. 2021–2024.
[20] Tschumperlé, D., Deriche, R.: Vector-valued image regularization with pdes: A common framework for different applications. IEEE Trans. Pattern Analysis Machine Intelligence 27(2005), 4, 506–517. | DOI
[21] Šorel, M.: Multichannel Blind Restoration of Images with Space-Variant Degradations. PhD Thesis, Charles University, Prague 2007.
[22] Šorel, M., Flusser, J.: Space-variant restoration of images degraded by camera motion blur. IEEE Trans. Image Process. 17 (2008), 2, 105–116. | DOI | MR
[23] Šorel, M., Šroubek, F.: Space-variant deblurring using one blurred and one underexposed image. In: Proc. Internat. Conf. Image Processing, 2009, pp. 157–160.
[24] M. , Šroubek, F., Flusser, J.: Towards superresolution in the presence of spatially varying blur. In: Super-Resolution Imaging (P. Milanfar, eds.), CRC Press 2010.
[25] Šroubek, F., Cristobal, G., Flusser, J.: A unified approach to superresolution and multichannel blind deconvolution. IEEE Trans. Image Process. 16 (2007), 2322–2332. | DOI | MR
[26] Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition 2010.
[27] Yu, W.: An embedded camera lens distortion correction method for mobile computing applications. IEEE Trans. Consumer Electronics 49 (2003), 4, 894–901. | DOI
[28] Yuan, L., Sun, J., Quan, L., Shum, H.-Y.: Image deblurring with blurred/noisy image pairs. In: SIGGRAPH ’07: ACM SIGGRAPH 2007 Papers, ACM, New York 2007, p. 1.
[29] Zitová, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 11 (2003), 21, 977–1000. | DOI