Keywords: feature selection; curse of dimensionality; over-fitting; stability; machine learning; dimensionality reduction
@article{KYB_2011_47_3_a6,
author = {Somol, Petr and Grim, Ji\v{r}{\'\i} and Novovi\v{c}ov\'a, Jana and Pudil, Pavel},
title = {Improving feature selection process resistance to failures caused by curse-of-dimensionality effects},
journal = {Kybernetika},
pages = {401--425},
year = {2011},
volume = {47},
number = {3},
zbl = {1218.62065},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_3_a6/}
}
TY - JOUR AU - Somol, Petr AU - Grim, Jiří AU - Novovičová, Jana AU - Pudil, Pavel TI - Improving feature selection process resistance to failures caused by curse-of-dimensionality effects JO - Kybernetika PY - 2011 SP - 401 EP - 425 VL - 47 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2011_47_3_a6/ LA - en ID - KYB_2011_47_3_a6 ER -
%0 Journal Article %A Somol, Petr %A Grim, Jiří %A Novovičová, Jana %A Pudil, Pavel %T Improving feature selection process resistance to failures caused by curse-of-dimensionality effects %J Kybernetika %D 2011 %P 401-425 %V 47 %N 3 %U http://geodesic.mathdoc.fr/item/KYB_2011_47_3_a6/ %G en %F KYB_2011_47_3_a6
Somol, Petr; Grim, Jiří; Novovičová, Jana; Pudil, Pavel. Improving feature selection process resistance to failures caused by curse-of-dimensionality effects. Kybernetika, Tome 47 (2011) no. 3, pp. 401-425. http://geodesic.mathdoc.fr/item/KYB_2011_47_3_a6/
[1] Brown, G.: A new perspective for information theoretic feature selection. In: Proc. AISTATS ’09, JMLR: W&CP 5 (2009), pp. 49–56.
[2] Chang, Ch.-Ch., Lin, Ch.-J.: LIBSVM: A Library for SVM, 2001. http://www.csie.ntu.edu.tw/~cjlin/libsvm
[3] Das, S.: Filters, wrappers and a boosting-based hybrid for feature selection. In: Proc. 18th Int. Conf. on Machine Learning (ICML ’01), Morgan Kaufmann Publishers Inc. 2001, pp. 74–81.
[4] Dash, M., Choi, K., Scheuermann, P., Liu, H.: Feature selection for clustering – a filter solution. In: Proc. 2002 IEEE Int. Conf. on Data Mining (ICDM ’02), Vol. 00, IEEE Comp. Soc. 2002, p. 115.
[5] Devijver, P. A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall 1982. | MR | Zbl
[6] Dutta, D., Guha, R., Wild, D., Chen, T.: Ensemble feature selection: Consistent descriptor subsets for multiple qsar models. J. Chem. Inf. Model. 43 (2007), 3, pp. 989–997.
[7] C. Emmanouilidis: Multiple-criteria genetic algorithms for feature selection in neuro-fuzzy modeling. In: Internat. Conf. on Neural Networks, Vol. 6, 1999, pp. 4387–4392.
[8] Frank, A., Asuncion, A.: HASH(0x3185490). UCI Machine Learning Repository, 2010.
[9] Gheyas, I. A., Smith, L. S.: Feature subset seleciton in large dimensionality domains. Pattern Recognition 43 (2010), 1, 5–13. | DOI
[10] Glover, F. W., Kochenberger, G. A., eds.: Handbook of Metaheuristics. Internat. Ser. Operat. Research & Management Science 5, Springer 2003. | MR | Zbl
[11] Günter, S., Bunke, H.: An evaluation of ensemble methods in handwritten word recog. based on feature selection. In: Proc. ICPR ’04, IEEE Comp. Soc. 2004, pp. 388–392.
[12] Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003), 1157–1182. | Zbl
[13] Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. A., eds.: Feature Extraction – Foundations and Applications. Studies in Fuzziness and Soft Comp. 207 Physica, Springer 2006. | Zbl
[14] Ho, Tin Kam: The random subspace method for constructing decision forests. IEEE Trans. PAMI 20 (1998), 8, 832–844. | DOI
[15] Hussein, F., Ward, R., Kharma, N.: Genetic algorithms for feature selection and weighting, a review and study. In: Proc. 6th ICDAR, Vol. 00, IEEE Comp. Soc. 2001, pp. 1240–1244.
[16] Jensen, R.: Performing feature selection with ACO. Studies Comput. Intelligence 34, Springer 2006, pp. 45–73.
[17] Special issue on variable and feature selection. J. Machine Learning Research. http://www.jmlr.org/papers/special/feature.html, 2003.
[18] Kalousis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms: A study on high-dimensional spaces. Knowledge Inform. Systems 12 (2007), 1, 95–116. | DOI
[19] Kittler, J., Hatef, M., Duin, R. P. W., Matas, J.: On combining classifiers. IEEE Trans. PAMI 20 (1998), 3, 226–239. | DOI
[20] Kohavi, R., John, G. H.: Wrappers for feature subset selection. Artificial Intelligence 97 (1997), 1–2, 273–324. | DOI | Zbl
[21] Kononenko, I.: Estimating attributes: Analysis and extensions of RELIEF. In: Proc. ECML-94, Springer 1994, pp. 171–182.
[22] Kuncheva, L. I.: A stability index for feature selection. In: Proc. 25th IASTED Internat. Mul.-Conf. AIAP’07, ACTA Pr. 2007, pp. 390–395.
[23] Lai, C., Reinders, M. J. T., Wessels, L.: Random subspace method for multivariate feature selection. Pattern Recognition Lett. 27 (2006), 10, 1067–1076. | DOI
[24] Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers 1998. | Zbl
[25] Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. KDE 17 (2005), 4, 491–502.
[26] Nakariyakul, S., Casasent, D. P.: Adaptive branch and bound algorithm for selecting optimal features. Pattern Recognition Lett. 28 (2007), 12, 1415–1427. | DOI
[27] Nakariyakul, S., Casasent, D. P.: An improvement on floating search algorithms for feature subset selection. Pattern Recognition 42 (2009), 9, 1932–1940. | DOI | Zbl
[28] Novovičová, J., Pudil, P., Kittler, J.: Divergence based feature selection for multimodal class densities. IEEE Trans. PAMI 18 (1996), 2, 218–223. | DOI
[29] Pudil, P., Novovičová, J., Choakjarernwanit, N., Kittler, J.: Feature selection based on the approximation of class densities by finite mixtures of special type. Pattern Recognition 28 (1995), 9, 1389–1398. | DOI
[30] Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognition Lett. 15 (1994), 11, 1119–1125. | DOI
[31] Raudys, Š. J.: Feature over-selection. In: Proc. S+SSPR, Lecture Notes in Comput. Sci. 4109, Springer 2006, pp. 622–631.
[32] al., V. C. Raykar et: Bayesian multiple instance learning: automatic feature selection and inductive transfer. In: Proc. ICML ’08, ACM 2008, pp. 808–815.
[33] Reunanen, J.: A pitfall in determining the optimal feature subset size. In: Proc. 4th Internat. Workshop on Pat. Rec. in Inf. Systs (PRIS 2004), pp. 176–185.
[34] Reunanen, J.: Less biased measurement of feature selection benefits. In: Stat. and Optimiz. Perspectives Workshop, SLSFS, Lecture Notes in Comput. Sci. 3940, Springer 2006, pp. 198–208.
[35] Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23 (2007), 19, 2507–2517. | DOI
[36] Salappa, A., Doumpos, M., Zopounidis, C.: Feature selection algorithms in classification problems: An experimental evaluation. Optimiz. Methods Software 22 (2007), 1, 199–212. | DOI | MR | Zbl
[37] Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surveys 34 (2002), 1, 1–47. | DOI
[38] Sebban, M., Nock, R.: A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recognition 35 (2002), 835–846. | DOI | Zbl
[39] Somol, P., Grim, J., Pudil, P.: Criteria ensembles in feature selection. In: Proc. MCS, Lecture Notes in Comput. Sci. 5519, Springer 2009, pp. 304–313.
[40] Somol, P., Grim, J., Pudil, P.: The problem of fragile feature subset preference in feature selection methods and a proposal of algorithmic workaround. In: ICPR 2010. IEEE Comp. Soc. 2010.
[41] Somol, P., Novovičová, J., Pudil, P.: Flexible-hybrid sequential floating search in statistical feature selection. In: Proc. S+SSPR, Lecture Notes in Comput. Sci. 4109, Springer 2006, pp. 632–639.
[42] Somol, P., Novovičová, J.: Evaluating the stability of feature selectors that optimize feature subset cardinality. In: Proc. S+SSPR, Lecture Notes in Comput. Sci. 5342 Springer 2008, pp. 956–966.
[43] Somol, P., Novovičová, J., Grim, J., Pudil, P.: Dynamic oscillating search algorithms for feature selection. In: ICPR 2008. IEEE Comp. Soc. 2008.
[44] Somol, P., Novovičová, J., Pudil, P.: Improving sequential feature selection methods performance by means of hybridization. In: Proc. 6th IASTED Int. Conf. on Advances in Computer Science and Engrg. ACTA Press 2010.
[45] Somol, P., Pudil, P.: Oscillating search algorithms for feature selection. In: ICPR 2000, IEEE Comp. Soc. 02 (2000), 406–409.
[46] Somol, P., Pudil, P., Kittler, J.: Fast branch & bound algorithms for optimal feature selection. IEEE Trans. on PAMI 26 (2004), 7, 900–912. | DOI
[47] Sun, Y.: Iterative RELIEF for feature weighting: Algorithms, theories, and applications. IEEE Trans. PAMI 29 (2007), 6, 1035–1051. | DOI
[48] al, M.-A. Tahir et: Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier. Patt. Recognition Lett. 28 (2007), 4, 438–446. | DOI
[49] Whitney, A. W.: A direct method of nonparametric measurement selection. IEEE Trans. Comput. 20 (1971), 9, 1100–1103. | Zbl
[50] Yang, Y., Pedersen, J. O.: A comparative study on feature selection in text categorization. In: Proc. 14th Internat. Conf. on Machine Learning (ICML ’97), Morgan Kaufmann 1997, pp. 412–420.
[51] Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proc. 20th Internat. Conf. on Machine Learning (ICML-03), Vol. 20, Morgan Kaufmann 2003, pp. 856–863.
[52] Zhu, Z., Ong, Y. S., Dash, M.: Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans. Systems Man Cybernet., Part B 37 (2007), 1, 70. | DOI