Keywords: information source; message; uncertainty; fuzzy set; fuzzy entropy; fuzzy information
@article{KYB_2011_47_3_a2,
author = {Mare\v{s}, Milan},
title = {Entropies of vague information sources},
journal = {Kybernetika},
pages = {337--355},
year = {2011},
volume = {47},
number = {3},
mrnumber = {2857194},
zbl = {1242.94010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_3_a2/}
}
Mareš, Milan. Entropies of vague information sources. Kybernetika, Tome 47 (2011) no. 3, pp. 337-355. http://geodesic.mathdoc.fr/item/KYB_2011_47_3_a2/
[1] Benvenuti, P., Vivona, D., Divari, M.: Order relations for fuzzy sets and entropy measure. In: New Trends in Fuzzy Systems (E. Mancini, M. Squillante and A. Ventre, eds.). World Scientific 1998, pp. 224–232.
[2] Bronevich, A., Klir, G. J.: Measure of uncertainty for imprecise probabilities. An axiomatic approach. Internat. J. Approx. Reason. 51 (2010), 365–390. | DOI | MR
[3] Calvo, T., Mayor, G., (eds.), R. Measiar: Aggregation Operators. Physical-Verlag, Heidelberg 2002. | MR
[4] Luca, A. De, Termini, S.: A definition of a non-probabilistic entropy in the setting of fuzzy set theory. Inform. and Control 20 (1972), 301–312. | DOI | MR
[5] Fisher, R. A.: Statistical Methods for Research Workers. Olivier and Boyd, Edinburgh 1932.
[6] Forte, B.: Measures of Information: The General Axiomatic Theory. RAIRO Information Théory. Appl. 1999, pp. 63–90. | MR
[7] Hung, W.-L., Yang, M.-S.: Fuzzy entropy on intuitionistic fuzzy sets. Internat. J. of Intelligent Systems 21 (2006), 443–451. | DOI | Zbl
[8] Fériet, J.-M. Kampé de: La théorie general de l’information et la mesure subjective de l’information. In: Lecture Notes in Math. 398. Springer-Verlag, Heidelberg 1974, pp. 1–35.
[9] Fériet, J.-M. Kampé dé, Forte, B.: Information et probabilité. C. R. Acad. Sci. Paris 265 (1967), 110–114, 142–146, 350–353.
[10] Klement, E.-P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht 2000. | MR | Zbl
[11] Klir, G. J., Folger, T. A.: Fuzzy Sets. Uncertainty and Information. Prentice Hall, Englewood Cliffs 1988. | MR | Zbl
[12] Klir, G. J., Wang, Z.: Generalized Measure Theory. Springer-Verlag, Berlin 2009. | MR | Zbl
[13] Kolesárová, A., Vivona, D.: Entropy of T-sums and T-products of L-R fuzzy numbers. Kybernetika 37 (2001), 2, 127–145. | MR | Zbl
[14] Mareš, M.: Computation Over Fuzzy Quantities. CRC-Pres, Boca Raton 1994. | MR
[15] Mareš, M.: Weak arithmetics of fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 2, 143–154. | DOI | MR
[16] Mareš, M.: Information measures and uncertainty of particular symbols. Kybernetika 47 (2011), 1, 144–163. | MR | Zbl
[17] Mareš, M., Mesiar, R.: Information in granulated data sources. In: Proc. ICSCCW 2007 (W. Pedrycz, R. Aliev, Mo. Jamshidi, and B. Turksen, eds.), b-Quadrat Verlag, Antalya 2007, pp. 185–194.
[18] Ming, Q., Li, T.-R.: Some properties and new formulae of fuzzy entropy. In: Proc. 2004 IEEE Internat. Conf. on Networking, Sensing and Control, Vol. I, pp. 401–406.
[19] Rathie, P.: Generalization of the non-additive measures of uncertainty and information and their axiomatic characterization. Kybernetika 7 (1971), 2, 125–132. | MR
[20] Rathie, P.: On some new measures of uncertainty, inaccuracy and information and their characterizations. Kybernetika 7 (1971), 394–403. | MR | Zbl
[21] Rényi, A.: On measures of entropy and information. In: Proc. 4th Berkeley Symp. on Math. Statistics and Probability, 1961, Vol. I, pp. 547–561. | MR
[22] Shannon, C. E., Weawer, W.: A mathematical theory of communication. Bell. Syst. Techn. J. 27 (1948), 379–423, 623–653. | DOI | MR
[23] Yao, M., Zhang, S.: Generalized fuzzy entropy and its applications. In: Proc. 4th Internat. Conf. on Signal Processing 1998, Vol. 2, pp. 1197–1200.
[24] Zadeh, L. A.: Fuzzy sets. Inform. and Control 8 (1965), 3, 338–353. | DOI | MR | Zbl
[25] Zadeh, L. A.: From computing with numbers to computing with words. IEEE Trans. Circuits and Systems 45 (1999), 105–109. | MR | Zbl