Keywords: neutral systems; distributed delay; stability criteria
@article{KYB_2011_47_2_a6,
author = {Hu, Guang-Da},
title = {Stability {Criteria} of {Linear} {Neutral} {Systems} {With} {Distributed} {Delays}},
journal = {Kybernetika},
pages = {273--284},
year = {2011},
volume = {47},
number = {2},
mrnumber = {2828577},
zbl = {1251.45006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a6/}
}
Hu, Guang-Da. Stability Criteria of Linear Neutral Systems With Distributed Delays. Kybernetika, Tome 47 (2011) no. 2, pp. 273-284. http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a6/
[1] Brown, J. W., Churchill, R. V.: Complex Variables and Applications. McGraw–Hill Companies, Inc. and China Machine Press, Beijing 2004. | MR
[2] Hale, J. K., Lunel, S. M. Verduyn: Introdution to Functional Equations. Springer–Verlag, New York 1993.
[3] Hale, J. K., Lunel, S. M. Verduyn: Strong stabilization of neutral functional differential equations. IMA J. Math. Control Inform. 19 (2002), 5–23. | DOI | MR
[4] Hu, G. Da, Hu, G. Di: Stability of neutral-delay differential systems: boundary criteria. Appl. Math. Comput. 87 (1997), 247–259. | DOI | MR | Zbl
[5] Hu, G. Da, Liu, M.: Stability criteria of linear neutral systems with multiple delays. IEEE Trans. Automat. Control 52 (2007), 720–724. | DOI | MR
[6] Hu, G. Da, Mitsui, T.: Stability analysis of numerical methods for systems of neutral delay-differential equations. BIT 35 (1995), 504–515. | DOI | MR | Zbl
[7] Kolmanovskii, V. B., Myshkis, A.: Applied Theory of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1992. | MR
[8] Lancaster, P.: The Theory of Matrices with Applications. Academic Press, Orlando 1985. | MR
[9] Li, H., Zhong, S., Li, H.: Some new simple stability criteria of linear neutral systems with a single delay. J. Comput. Appl. Math. 200 (2007), 441–447. | DOI | MR | Zbl
[10] Michiels, W., Niculescu, S.: Stability and Stabilization of Time Delay Systems: An Eigenvalue Based Approach. SIAM, Philadelphia 2007. | MR | Zbl
[11] Park, J. H.: A new delay-dependent stability criterion for neutral systems with multiple delays. J. Comput. Appl. Math. 136 (2001), 177–184. | DOI | MR
[12] Vyhlídal, T., Zítek, P.: Modification of Mikhaylov criterion for nuetral time-delay systems. IEEE Trans. Automat. Control 54 (2009), 2430–2435. | DOI | MR