Keywords: GPGPU; CUDA; parallel algorithms; high performance computing; differential geometry; mean-curvature flow; Willmore flow; Runge--Kutta method; method of lines; explicit scheme; complementary finite volume method
@article{KYB_2011_47_2_a5,
author = {Oberhuber, Tom\'a\v{s} and Suzuki, Atsushi and \v{Z}abka, V{\'\i}t\v{e}zslav},
title = {The {CUDA} implementation of the method of lines for the curvature dependent flows},
journal = {Kybernetika},
pages = {251--272},
year = {2011},
volume = {47},
number = {2},
mrnumber = {2828576},
zbl = {1221.65071},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a5/}
}
TY - JOUR AU - Oberhuber, Tomáš AU - Suzuki, Atsushi AU - Žabka, Vítězslav TI - The CUDA implementation of the method of lines for the curvature dependent flows JO - Kybernetika PY - 2011 SP - 251 EP - 272 VL - 47 IS - 2 UR - http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a5/ LA - en ID - KYB_2011_47_2_a5 ER -
Oberhuber, Tomáš; Suzuki, Atsushi; Žabka, Vítězslav. The CUDA implementation of the method of lines for the curvature dependent flows. Kybernetika, Tome 47 (2011) no. 2, pp. 251-272. http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a5/
[1] Baskaran, M. M., Bordaweker, R.: Optimizing Sparse-Vector Matrix Multiplication on Gpus. IBM Research Report RC24704, IBM 2009.
[2] Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on throughput oriented processors. In Supercomputing’09, Nov. 2009.
[3] Beneš, M.: Mathematical and computational aspects of solidification of pure substances. Acta Math. Univ. Comenian. 70 (2000), 123–151. | MR
[4] Beneš, M.: Mathematical analysis of phase-field equations with numerically efficient coupling terms. Interfaces and Free Boundaries 3 (2001), 201–221. | DOI | MR | Zbl
[5] Beneš, M.: Diffuse-interface treatment of the anisotropic mean-curvature flow. Appl. Math. 80 (2003), 6, 437–453. | DOI | MR | Zbl
[6] Beneš, M.: Phase Field Model of Microstructure Growth in Solidification of Pure Substances. PhD. Dissertation, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague 1997.
[7] Beneš, M., Mikula, K., Oberhuber, T., Ševčovič, D.: Comparison study for level set and direct Lagrangian methods for computing Willmore flow of closed plannar curves. Computing and Visualization in Science 12 (2009), 307–317. | DOI | MR
[8] Bertalmio, M., Caselles, V., Haro, G., Sapiro, G.: Handbook of Mathematical Models in Computer Vision. PDE-Based Image and Surface Inpainting, Springer 2006, pp. 33–61. | MR
[9] Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the gpu: Conjugate gradients and multigrid. ACM Trans. Graphics 22 (2003), 3, 917–924. | DOI
[10] Buatois, L., Caumon, G., Levy, B.: Concurrent number cruncher: a gpu implementation of a general sparse linear solver. Internat. J. Parallel Emerg. Distrib. Syst. 24 (2009), 3, 205–223. | DOI | MR
[11] Chen, Y.-G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom. 33 (1991), 3, 749–786. | MR | Zbl
[12] Clarenz, U.: The Wulff shape minimizes an anisotropic Willmore functional. Interfaces and Free Boundaries 6 (2004), 351–360. | DOI | MR | Zbl
[13] Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with smooth boundary conditions. Computer Aided Geometric Design 21 (2004), 5, 427–445. | DOI | MR | Zbl
[14] Deckelnick, K., Dziuk, G.: Mathematical aspects of evolving interfaces. Lecture Notes in Math. 1812, Numerical Approximation of Mean Curvature Flow of Graphs and Level Sets, Springer-Verlag, Berlin–Heidelberg 2003, pp. 53–87. | MR
[15] Dziuk, G., Kuwert, E., Schätzle, R.: Evolution of elastic curves in $\mathbb {R}^n$: Existence and computation. SIAM J. Math. Anal.41 (2003), 6, 2161–2179.
[16] Evans, L. C., Spruck, J.: Motion of level sets by mean curvature II. Trans. Amer. Math. Soc. 330 (1993), 1, 321–332. | DOI | MR
[17] Giga, Y.: Surface evolution equations: A level set approach. Birkhauser Verlag 2006. | MR | Zbl
[18] Göddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Buijssen, S. H., Grajewski, M., Turek, S.: Exploring weak scalability for fem calculations on a gpu-enhanced cluster. Parallel Computing, Special issue: High-performance computing using accelerators 33 (2007), 685–699.
[19] Göddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Wobker, H., Becker, C., Turek, S.: Using gpus to improve multigrid solver performance on a cluster. Internat. J. Comput. Sci. Engrg. 4 (2008), 1, 36–55.
[20] Göddeke, D., Wobker, H., Strzodka, R., Mohd-Yusof, J., McCormick, P., Turek, S.: Co-processor acceleration of an unmodified parallel solid mechanics code with feastgpu. Internat. J. Comput. Sci. Engrg. 4 (2009), 4, 254–269. | DOI
[21] Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing. Pearson, Addison Wesley 2003.
[22] Gurtin, M. E.: On the two-phase stefan problem with interfacial energy and entropy. Arch. Rational Mech. Anal. 96 (1986), 200–240. | MR | Zbl
[23] Handlovičová, A., Mikula, K., Sgallari, F.: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math. 93 (2003), 675–695. | DOI | MR | Zbl
[24] Harris, M.: Optimizing parallel reduction in cuda. NVIDIA CUDA SDK 2007.
[25] Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung 28 (1973), 693–703.
[26] Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differential Geometry 20 (1984), 237–266. | MR | Zbl
[27] Huisken, G.: Non-parametric mean curvature evolution with boudary conditions. J. Differential Geom. 77 (1988), 369–379. | DOI
[28] Kimura, M.: Topics in mathematical modeling. Jindřich Nečas Center for Mathematical Modelling 4, Lecture Notes, Geometry of Hypersurfaces and Moving Hypersurfaces in $R^m$ for the Study of Moving Boundary Problems, Matfyzpress, Publishing House of Mathematics and Physics, Charles University in Prague 2008, pp. 39–94. | MR
[29] Kruger, J., Westermann, R.: Linear algebra operators for gpu implementation of numerical algorithms. ACM Trans. Graphics 22 (2003), 3, 908–916. | DOI
[30] Kuwert, E., Schätzle, R.: Gradient flow for the Willmore functional. Comm. Anal. Geom. 10 (2003), 2, 307–340. | MR
[31] Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Differ. Geom. 57 (2001), 409–441. | MR | Zbl
[32] Mayer, U. F., Simonett, G.: Evolution equations: Applications to physics, industry, life scienses economics. Self-intersections for Willmore flow, Progress in nonlinear differential equations and their applications, Birkhäuser Verlag, Basel 2003, pp. 341–348. | MR
[33] Mikula, K.: Image processing with partial differential equations. In: Modern Methods in Scientific Computing and Applications (A. Bourlioux and M. Gander, eds.), NATO Science Ser. II 75, Kluwer Academic Publishers, Dodrecht 2002, pp. 283–322. | MR | Zbl
[34] Mikula, K., Sarti, A.: Parametric and geometric deformable models: An application in biomaterials and medical imagery. In: Parallel co-volume subjective surface method for 3D medical image segmentation 2, 2007, pp. 123–160.
[35] Nitsche, J. C. C.: On new results in the theory of minimal surfaces. Bull. Amer. Math. Soc. 71 (1965), 195–270. | MR | Zbl
[36] Oberhuber, T.: Complementary finite volume scheme for the anisotropic surface diffusion flow. In: Proc. Algoritmy 2009 (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševčovič, eds.), pp. 153–164. | Zbl
[37] Oberhuber, T.: Numerical Solution of Willmore Flow. PhD. Thesis, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 2009.
[38] Pharr, M., ed.: GPU Gems 2: Programming Techniques for High-Performance Graphics and General–Purpose Computation. Addison-Wesley, 2005.
[39] Simonett, G.: The Willmore flow near spheres. Differential and Integral Equations 14 (2001), 8, 1005–1014. | MR | Zbl
[40] Šimek, V., Dvořák, R., Zbořil, F., Kunovský, J.: Towards accelerated computation of atmospheric equations using CUDA. In: 11th Internat. Conf. on Computer Modelling and Simulation, pp. 449–454, 2009.
[41] Svetina, S., Žekš, B.: Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur. Biophys. J. 17 (1989), 101–111. | DOI
[42] Vitásek, E.: Numerické metody (In Czech). SNTL, Nakladatelství technické literatury, 1987.
[43] Walkington, N. J.: Algorithms for computing motion by mean curvature. SIAM J. Numer. Anal. 33 (1996), 6, 2215–2238. | DOI | MR | Zbl
[44] Zhang, Y., Cohen, J., Owens, J. D.: Fast tridiagonal solvers on the gpu. In: Proc. 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming 2010, p. 10.
[45] Nvidia: NVIDIA CUDA Programming Guide 3.0. http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf, 2010.