Keywords: second order $\eta $-approximated optimization problem; second order $\eta $-saddle point; second order $\eta $-Lagrange function; second order invex function with respect to $\eta $; second order optimality conditions
@article{KYB_2011_47_2_a3,
author = {Antczak, Tadeusz},
title = {Saddle points criteria via a second order $\eta $-approximation approach for nonlinear mathematical programming involving second order invex functions},
journal = {Kybernetika},
pages = {222--240},
year = {2011},
volume = {47},
number = {2},
mrnumber = {2828574},
zbl = {1242.90171},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a3/}
}
TY - JOUR AU - Antczak, Tadeusz TI - Saddle points criteria via a second order $\eta $-approximation approach for nonlinear mathematical programming involving second order invex functions JO - Kybernetika PY - 2011 SP - 222 EP - 240 VL - 47 IS - 2 UR - http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a3/ LA - en ID - KYB_2011_47_2_a3 ER -
%0 Journal Article %A Antczak, Tadeusz %T Saddle points criteria via a second order $\eta $-approximation approach for nonlinear mathematical programming involving second order invex functions %J Kybernetika %D 2011 %P 222-240 %V 47 %N 2 %U http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a3/ %G en %F KYB_2011_47_2_a3
Antczak, Tadeusz. Saddle points criteria via a second order $\eta $-approximation approach for nonlinear mathematical programming involving second order invex functions. Kybernetika, Tome 47 (2011) no. 2, pp. 222-240. http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a3/
[1] Antczak, T.: An $\eta $-approximation approach to nonlinear mathematical programming involving invex functions. Numer. Funct. Anal. Optim. 25 (2004), 5–6, 423–438. | DOI | MR
[2] Antczak, T.: Saddle points criteria in an $\eta $-approximation approach for nonlinear mathematical programming involving invex functions. J. Optim. Theory Appl. 132 (2007), 1, 71–87. | DOI | MR
[3] Antczak, T.: A modified objective function method in mathematical programming with second order invexity. Numer. Funct. Anal. Optim. 28 (2007), 1–2, 1–13. | DOI | MR | Zbl
[4] Antczak, T.: A second order $\eta $-approximation method for constrained optimization problems involving second order invex functions. Appl. Math. 54 (2009), 433–445. | DOI | MR | Zbl
[5] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, New York 1991. | MR
[6] Bector, C. R., Bector, B. K.: (Generalized)-bonvex functions and second order duality for a nonlinear programming problem. Congr. Numer. 52 (1985), 37–52.
[7] Bector, C. R., Bector, B. K.: On various duality theorems for second order duality in nonlinear programming. Cahiers Centre Études Rech. Opér. 28 (1986), 283–292. | MR | Zbl
[8] Bector, C. R., Chandra, S.: Generalized Bonvex Functions and Second Order Duality in Mathematical Programming. Research Report No. 85-2, Department of Actuarial and Management Sciences, University of Manitoba, Winnepeg, Manitoba 1985.
[9] Ben-Tal, A.: Second-order and related extremality conditions in nonlinear programming. J. Optim. Theory Appl. 31 (1980), 2, 143–165. | DOI | MR | Zbl
[10] Craven, B. D.: Invex functions and constrained local minima. Bull. Austral. Math. Soc. 24 (1981), 357–366. | DOI | MR | Zbl
[11] Hanson, M. A.: On sufficiency of the Kuhn–Tucker conditions. J. Math. Anal. Appl. 80 (1981) 545–550. | DOI | MR | Zbl
[12] Mangasarian, O. L.: Nonlinear Programming. McGraw-Hill, New York 1969. | MR | Zbl
[13] Rockafellar, R. T.: Convex Analysis. Princeton University Press, 1970. | MR | Zbl