Keywords: monotone maximizer in an optimization problem; noncooperative game; supermodular game; increasing optimal best response for each player; equilibrium point
@article{KYB_2011_47_2_a2,
author = {Flores-Hern\'andez, Rosa Mar{\'\i}a and Montes-de-Oca, Ra\'ul},
title = {Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points},
journal = {Kybernetika},
pages = {207--221},
year = {2011},
volume = {47},
number = {2},
mrnumber = {2828573},
zbl = {1215.91004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a2/}
}
TY - JOUR AU - Flores-Hernández, Rosa María AU - Montes-de-Oca, Raúl TI - Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points JO - Kybernetika PY - 2011 SP - 207 EP - 221 VL - 47 IS - 2 UR - http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a2/ LA - en ID - KYB_2011_47_2_a2 ER -
%0 Journal Article %A Flores-Hernández, Rosa María %A Montes-de-Oca, Raúl %T Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points %J Kybernetika %D 2011 %P 207-221 %V 47 %N 2 %U http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a2/ %G en %F KYB_2011_47_2_a2
Flores-Hernández, Rosa María; Montes-de-Oca, Raúl. Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points. Kybernetika, Tome 47 (2011) no. 2, pp. 207-221. http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a2/
[1] Altman, E., Altman, Z.: S-modular games and power control in wireless networks. IEEE Trans. Automat. Control 48 (2003), 839–842. | DOI | MR
[2] Burger, E.: Introduction to the Theory of Games. Prentice Hall, Englewood Cliffs, N. J. 1963. | Zbl
[3] Flores-Hernández, R. M., Montes-de-Oca, R.: Monotonicity of minimizers in optimization problems with applications to Markov control processes. Kybernetika 43 (2007), 347–368. | MR | Zbl
[4] Fudenberg, D., Tirole, J.: Game Theory. The MIT Press, Cambridge 1991. | MR
[5] Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica 58 (1990), 1255–1277. | DOI | MR | Zbl
[6] Rieder, U.: Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 115–131. | DOI | MR | Zbl
[7] Sundaram, R. K.: A First Course in Optimization Theory. Cambridge University Press, Cambridge 1996. | MR | Zbl
[8] Topkis, D. M.: Minimizing a submodular function on a lattice. Oper. Res. 26 (1978), 305–321. | DOI | MR | Zbl
[9] Topkis, D. M.: Equilibrium points in nonzero-sum n-person submodular games. SIAM J. Control Optim. 17 (1979), 773–787. | DOI | MR | Zbl
[10] Topkis, D. M.: Supermodularity and Complementarity. Princeton University Press, Princeton, N. J. 1998. | MR
[11] Vives, X.: Nash equilibrium with strategic complementarities. J. Math. Econ. 19 (1990), 305–321. | DOI | MR | Zbl
[12] Yao, D. D.: S-modular games with queueing applications. Queueing Syst. 21 (1995), 449–475. | MR | Zbl