Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points
Kybernetika, Tome 47 (2011) no. 2, pp. 207-221 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper conditions proposed in Flores-Hernández and Montes-de-Oca [3] which permit to obtain monotone minimizers of unbounded optimization problems on Euclidean spaces are adapted in suitable versions to study noncooperative games on Euclidean spaces with noncompact sets of feasible joint strategies in order to obtain increasing optimal best responses for each player. Moreover, in this noncompact framework an algorithm to approximate the equilibrium points for noncooperative games is supplied.
In this paper conditions proposed in Flores-Hernández and Montes-de-Oca [3] which permit to obtain monotone minimizers of unbounded optimization problems on Euclidean spaces are adapted in suitable versions to study noncooperative games on Euclidean spaces with noncompact sets of feasible joint strategies in order to obtain increasing optimal best responses for each player. Moreover, in this noncompact framework an algorithm to approximate the equilibrium points for noncooperative games is supplied.
Classification : 91A10
Keywords: monotone maximizer in an optimization problem; noncooperative game; supermodular game; increasing optimal best response for each player; equilibrium point
@article{KYB_2011_47_2_a2,
     author = {Flores-Hern\'andez, Rosa Mar{\'\i}a and Montes-de-Oca, Ra\'ul},
     title = {Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points},
     journal = {Kybernetika},
     pages = {207--221},
     year = {2011},
     volume = {47},
     number = {2},
     mrnumber = {2828573},
     zbl = {1215.91004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a2/}
}
TY  - JOUR
AU  - Flores-Hernández, Rosa María
AU  - Montes-de-Oca, Raúl
TI  - Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points
JO  - Kybernetika
PY  - 2011
SP  - 207
EP  - 221
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a2/
LA  - en
ID  - KYB_2011_47_2_a2
ER  - 
%0 Journal Article
%A Flores-Hernández, Rosa María
%A Montes-de-Oca, Raúl
%T Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points
%J Kybernetika
%D 2011
%P 207-221
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a2/
%G en
%F KYB_2011_47_2_a2
Flores-Hernández, Rosa María; Montes-de-Oca, Raúl. Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points. Kybernetika, Tome 47 (2011) no. 2, pp. 207-221. http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a2/

[1] Altman, E., Altman, Z.: S-modular games and power control in wireless networks. IEEE Trans. Automat. Control 48 (2003), 839–842. | DOI | MR

[2] Burger, E.: Introduction to the Theory of Games. Prentice Hall, Englewood Cliffs, N. J. 1963. | Zbl

[3] Flores-Hernández, R. M., Montes-de-Oca, R.: Monotonicity of minimizers in optimization problems with applications to Markov control processes. Kybernetika 43 (2007), 347–368. | MR | Zbl

[4] Fudenberg, D., Tirole, J.: Game Theory. The MIT Press, Cambridge 1991. | MR

[5] Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica 58 (1990), 1255–1277. | DOI | MR | Zbl

[6] Rieder, U.: Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 115–131. | DOI | MR | Zbl

[7] Sundaram, R. K.: A First Course in Optimization Theory. Cambridge University Press, Cambridge 1996. | MR | Zbl

[8] Topkis, D. M.: Minimizing a submodular function on a lattice. Oper. Res. 26 (1978), 305–321. | DOI | MR | Zbl

[9] Topkis, D. M.: Equilibrium points in nonzero-sum n-person submodular games. SIAM J. Control Optim. 17 (1979), 773–787. | DOI | MR | Zbl

[10] Topkis, D. M.: Supermodularity and Complementarity. Princeton University Press, Princeton, N. J. 1998. | MR

[11] Vives, X.: Nash equilibrium with strategic complementarities. J. Math. Econ. 19 (1990), 305–321. | DOI | MR | Zbl

[12] Yao, D. D.: S-modular games with queueing applications. Queueing Syst. 21 (1995), 449–475. | MR | Zbl