Keywords: robustness; weighting the order statistics of the squared residuals; consistency of the least weighted squares under heteroscedasticity
@article{KYB_2011_47_2_a1,
author = {V{\'\i}\v{s}ek, Jan \'Amos},
title = {Consistency of the least weighted squares under heteroscedasticity},
journal = {Kybernetika},
pages = {179--206},
year = {2011},
volume = {47},
number = {2},
mrnumber = {2828572},
zbl = {1220.62064},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a1/}
}
Víšek, Jan Ámos. Consistency of the least weighted squares under heteroscedasticity. Kybernetika, Tome 47 (2011) no. 2, pp. 179-206. http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a1/
[1] Bickel, P. J.: One-step Huber estimates in the linear model. J. Amer. Statist. Assoc. 70 (1975), 428–433. | DOI | MR | Zbl
[2] Breiman, L.: Probability. Addison-Wesley Publishing Company, London 1968. | MR | Zbl
[3] Croux, C., Rousseeuw, P. J.: A class of high-breakdown scale estimators based on subranges. Commun. Statist. Theory Methods 21 (1992), 1935–1951. | DOI | MR | Zbl
[4] Hájek, J., Šidák, Z.: Theory of Rank Test. Academic Press, New York 1967. | MR
[5] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A.: Robust Statistics – The Approach Based on Influence Functions. Wiley, New York 1986. | MR | Zbl
[6] Hettmansperger, T. P., Sheather, S. J.: A cautionary note on the method of Least Median Squares. Amer. Statist. 46 (1992), 79–83. | MR
[7] Judge, G. G., Griffiths, W. E., Hill, R. C., Lütkepohl, H., Lee, T. C.: The Theory and Practice of Econometrics. Second edition. Wiley, New York 1985. | MR
[8] Jurečková, J., Sen, P. K.: Regression rank scores scale statistics and studentization in linear models. In: Proc. Fifth Prague Symposium on Asymptotic Statistics, Physica Verlag 1993, 111–121. | MR
[9] Koul, H. L.: Weighted Empirical Processes in Dynamic Nonlinear Models. Lecture Notes in Statist. 166, Springer Verlag, New York 2002. | MR | Zbl
[10] Mašíček, J.: Consistency of the least weighted squares estimator. In: Statistics for Industry and Technology, Birkha̋ser Verlag Basel 2004 , 183–194.
[11] Rousseeuw, P. J.: Least median of square regression. J. Amer. Statist. Assoc. 79 (1984), 871–880. | DOI | MR
[12] Rousseeuw, P. J., Leroy, A. M.: Robust Regression and Outlier Detection. Wiley, New York 1987. | MR | Zbl
[13] Štepán, J.: Teorie pravděpodobnosti. Academia, Praha 1987.
[14] Tucker, H.: A Graduate Course in Probability. Academic Press, London 1967. | MR
[15] Vaart, A. W. van der, Welner, J. A.: Weak Convergence and Empirical Processes. Second edition. Springer-Verlag, New York 2000.
[16] Víšek, J. Á.: A cautionary note on the method of the Least Median of Squares reconsidered. In: Trans. Twelfth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes 1994, 254–259.
[17] Víšek, J. Á.: Sensitivity analysis of $M$-estimates. Ann. Inst. Statist. Math. 48 (1996), 469–495. | DOI | MR
[18] Víšek, J. Á.: On high breakdown point estimation. Computational Statistics 11 (1996), 137–146. | MR
[19] Víšek, J. Á.: Regression with high breakdown point. In: Robust 2000 (J Antoch and G. Dohnal, eds.), Union of Czech Math. and Phys. 2001, 324–356.
[20] Víšek, J. Á.: The least weighted squares I. The asymptotic linearity of normal equations. Bull. Czech Econometr. Soc. 9 (2002), 15, 31–58, 2002
[21] Víšek, J. Á.: The least weighted squares II. Consistency and asymptotic normality. Bull. Czech Econom. Soc. 9 (2002), 16, 1–28.
[22] Víšek, J. Á.: Sensitivity analysis of $M$-estimates of nonlinear regression model: Influence of data subsets. Ann. Inst. Statist. Math. 54 (2002), 261–290. | DOI | MR | Zbl
[23] Víšek, J. Á.: The least trimmed squares. Sensitivity study. In: Proc. Prague Stochastics 2006, (M. Hušková and M. Janžura, eds.) Matfyzpress 2006, 728–738. | Zbl
[24] Víšek, J. Á.: Robust error-term-scale estimate. IMS Collections. Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: Festschrift for Jana Jurečková, 7 (2010), 254–267. | MR
[25] Víšek, J. Á.: Empirical distribution function under heteroscedasticity. To appear in Statistics. http://www.informaworld.com/smpp/content?db=all&content=a922317072 | MR