Consistency of the least weighted squares under heteroscedasticity
Kybernetika, Tome 47 (2011) no. 2, pp. 179-206 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A robust version of the Ordinary Least Squares accommodating the idea of weighting the order statistics of the squared residuals (rather than directly the squares of residuals) is recalled and its properties are studied. The existence of solution of the corresponding extremal problem and the consistency under heteroscedasticity is proved.
A robust version of the Ordinary Least Squares accommodating the idea of weighting the order statistics of the squared residuals (rather than directly the squares of residuals) is recalled and its properties are studied. The existence of solution of the corresponding extremal problem and the consistency under heteroscedasticity is proved.
Classification : 62F35, 62J02
Keywords: robustness; weighting the order statistics of the squared residuals; consistency of the least weighted squares under heteroscedasticity
@article{KYB_2011_47_2_a1,
     author = {V{\'\i}\v{s}ek, Jan \'Amos},
     title = {Consistency of the least weighted squares under heteroscedasticity},
     journal = {Kybernetika},
     pages = {179--206},
     year = {2011},
     volume = {47},
     number = {2},
     mrnumber = {2828572},
     zbl = {1220.62064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a1/}
}
TY  - JOUR
AU  - Víšek, Jan Ámos
TI  - Consistency of the least weighted squares under heteroscedasticity
JO  - Kybernetika
PY  - 2011
SP  - 179
EP  - 206
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a1/
LA  - en
ID  - KYB_2011_47_2_a1
ER  - 
%0 Journal Article
%A Víšek, Jan Ámos
%T Consistency of the least weighted squares under heteroscedasticity
%J Kybernetika
%D 2011
%P 179-206
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a1/
%G en
%F KYB_2011_47_2_a1
Víšek, Jan Ámos. Consistency of the least weighted squares under heteroscedasticity. Kybernetika, Tome 47 (2011) no. 2, pp. 179-206. http://geodesic.mathdoc.fr/item/KYB_2011_47_2_a1/

[1] Bickel, P. J.: One-step Huber estimates in the linear model. J. Amer. Statist. Assoc. 70 (1975), 428–433. | DOI | MR | Zbl

[2] Breiman, L.: Probability. Addison-Wesley Publishing Company, London 1968. | MR | Zbl

[3] Croux, C., Rousseeuw, P. J.: A class of high-breakdown scale estimators based on subranges. Commun. Statist. Theory Methods 21 (1992), 1935–1951. | DOI | MR | Zbl

[4] Hájek, J., Šidák, Z.: Theory of Rank Test. Academic Press, New York 1967. | MR

[5] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A.: Robust Statistics – The Approach Based on Influence Functions. Wiley, New York 1986. | MR | Zbl

[6] Hettmansperger, T. P., Sheather, S. J.: A cautionary note on the method of Least Median Squares. Amer. Statist. 46 (1992), 79–83. | MR

[7] Judge, G. G., Griffiths, W. E., Hill, R. C., Lütkepohl, H., Lee, T. C.: The Theory and Practice of Econometrics. Second edition. Wiley, New York 1985. | MR

[8] Jurečková, J., Sen, P. K.: Regression rank scores scale statistics and studentization in linear models. In: Proc. Fifth Prague Symposium on Asymptotic Statistics, Physica Verlag 1993,  111–121. | MR

[9] Koul, H. L.: Weighted Empirical Processes in Dynamic Nonlinear Models. Lecture Notes in Statist. 166, Springer Verlag, New York 2002. | MR | Zbl

[10] Mašíček, J.: Consistency of the least weighted squares estimator. In: Statistics for Industry and Technology, Birkha̋ser Verlag Basel 2004 ,  183–194.

[11] Rousseeuw, P. J.: Least median of square regression. J. Amer. Statist. Assoc. 79 (1984), 871–880. | DOI | MR

[12] Rousseeuw, P. J., Leroy, A. M.: Robust Regression and Outlier Detection. Wiley, New York 1987. | MR | Zbl

[13] Štepán, J.: Teorie pravděpodobnosti. Academia, Praha 1987.

[14] Tucker, H.: A Graduate Course in Probability. Academic Press, London 1967. | MR

[15] Vaart, A. W. van der, Welner, J. A.: Weak Convergence and Empirical Processes. Second edition. Springer-Verlag, New York 2000.

[16] Víšek, J. Á.: A cautionary note on the method of the Least Median of Squares reconsidered. In: Trans. Twelfth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes 1994,  254–259.

[17] Víšek, J. Á.: Sensitivity analysis of $M$-estimates. Ann. Inst. Statist. Math. 48 (1996), 469–495. | DOI | MR

[18] Víšek, J. Á.: On high breakdown point estimation. Computational Statistics 11 (1996), 137–146. | MR

[19] Víšek, J. Á.: Regression with high breakdown point. In: Robust 2000 (J Antoch and G. Dohnal, eds.), Union of Czech Math. and Phys. 2001,  324–356.

[20] Víšek, J. Á.: The least weighted squares I. The asymptotic linearity of normal equations. Bull. Czech Econometr. Soc. 9 (2002), 15, 31–58, 2002

[21] Víšek, J. Á.: The least weighted squares II. Consistency and asymptotic normality. Bull. Czech Econom. Soc. 9 (2002), 16, 1–28.

[22] Víšek, J. Á.: Sensitivity analysis of $M$-estimates of nonlinear regression model: Influence of data subsets. Ann. Inst. Statist. Math. 54 (2002), 261–290. | DOI | MR | Zbl

[23] Víšek, J. Á.: The least trimmed squares. Sensitivity study. In: Proc. Prague Stochastics 2006, (M. Hušková and M. Janžura, eds.) Matfyzpress 2006,  728–738. | Zbl

[24] Víšek, J. Á.: Robust error-term-scale estimate. IMS Collections. Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: Festschrift for Jana Jurečková, 7 (2010), 254–267. | MR

[25] Víšek, J. Á.: Empirical distribution function under heteroscedasticity. To appear in Statistics. http://www.informaworld.com/smpp/content?db=all&content=a922317072 | MR