Lattice effect algebras densely embeddable into complete ones
Kybernetika, Tome 47 (2011) no. 1, pp. 100-109 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An effect algebraic partial binary operation $øplus$ defined on the underlying set $E$ uniquely introduces partial order, but not conversely. We show that if on a MacNeille completion $\widehat{E}$ of $E$ there exists an effect algebraic partial binary operation $\widehat{\oplus}$ then $\widehat{\oplus}$ need not be an extension of ${\oplus}$. Moreover, for an Archimedean atomic lattice effect algebra $E$ we give a necessary and sufficient condition for that $\widehat{\oplus}$ existing on $\widehat{E}$ is an extension of ${\oplus}$ defined on $E$. Further we show that such $\widehat{\oplus}$ extending ${\oplus}$ exists at most one.
An effect algebraic partial binary operation $øplus$ defined on the underlying set $E$ uniquely introduces partial order, but not conversely. We show that if on a MacNeille completion $\widehat{E}$ of $E$ there exists an effect algebraic partial binary operation $\widehat{\oplus}$ then $\widehat{\oplus}$ need not be an extension of ${\oplus}$. Moreover, for an Archimedean atomic lattice effect algebra $E$ we give a necessary and sufficient condition for that $\widehat{\oplus}$ existing on $\widehat{E}$ is an extension of ${\oplus}$ defined on $E$. Further we show that such $\widehat{\oplus}$ extending ${\oplus}$ exists at most one.
Classification : 03G12, 06D35, 06F25, 81P10
Keywords: non-classical logics; orthomodular lattices; effect algebras; $MV$-algebras; MacNeille completions
@article{KYB_2011_47_1_a7,
     author = {Rie\v{c}anov\'a, Zdenka},
     title = {Lattice effect algebras densely embeddable into complete ones},
     journal = {Kybernetika},
     pages = {100--109},
     year = {2011},
     volume = {47},
     number = {1},
     mrnumber = {2807867},
     zbl = {1229.03056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a7/}
}
TY  - JOUR
AU  - Riečanová, Zdenka
TI  - Lattice effect algebras densely embeddable into complete ones
JO  - Kybernetika
PY  - 2011
SP  - 100
EP  - 109
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a7/
LA  - en
ID  - KYB_2011_47_1_a7
ER  - 
%0 Journal Article
%A Riečanová, Zdenka
%T Lattice effect algebras densely embeddable into complete ones
%J Kybernetika
%D 2011
%P 100-109
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a7/
%G en
%F KYB_2011_47_1_a7
Riečanová, Zdenka. Lattice effect algebras densely embeddable into complete ones. Kybernetika, Tome 47 (2011) no. 1, pp. 100-109. http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a7/

[1] Chang, C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958). 467–490. | DOI | MR | Zbl

[2] Chovanec, F., Kôpka, F.: Difference posets in the quantum structures background. Internat. J. Theoret. Phys. 39 (2000), 571–583. | DOI | MR

[3] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. | MR

[4] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra. Order 12 (1995), 91–106. | DOI | MR

[5] Gudder, S. P.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30. | MR | Zbl

[6] Gudder, S. P.: S-dominating effect algebras. Internat. J. Theoret. Phys. 37 (1998), 915–923. | DOI | MR | Zbl

[7] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.

[8] Kalina, M.: On central atoms of Archimedean atomic lattice effect algebras. Kybernetika 46 (2010), 609–620. | MR | Zbl

[9] Kalina, M., Olejček, V., Paseka, J., Riečanová, Z.: Sharply dominating $MV$-effect algebras. To appear in: Internat. J. Theoret. Phys. DOI: 10.1007/s10773-010-0338-x.

[10] Kalmbach, G.: Orthomodular Lattices. Kluwer Academic Publ. Dordrecht 1998.

[11] Kôpka, F.: Compatibility in D-posets. Internat. J. Theoret. Phys. 34 (1995), 1525–1531. | DOI | MR

[12] Mosná, K.: Atomic lattice effect algebras and their sub-lattice effect algebras. J. Electr. Engrg. 58 (2007), 7/s, 3–6.

[13] Paseka, J., Riečanová, Z.: Isomorphism theorems on generalized effect algebras based on atoms. Inform. Sci. 179 (2009), 521–528. | DOI | MR | Zbl

[14] Paseka, J., Riečanová, Z.: The inheritance of BDE-property in sharply dominating lattice effect algebras and $(o)$-continuous states. To appear in: Soft Comput. DOI: 10.1007/s00500-010-0561-7.

[15] Riečanová, Z.: Compatibility and central elements in effect algebras. Tatra Mountains Math. Publ. 16 (1999), 151–158. | MR

[16] Riečanová, Z.: MacNeille completions of D-posets and effect algebras. Internat. J. Theoret. Phys. 39 (2000), 859–869. | DOI | MR

[17] Riečanová, Z.: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theoret. Phys. 38 (1999), 3209–3220. | DOI | MR

[18] Riečanová, Z.: Archimedean and block-finite lattice effect algebras. Demonstratio Math. 33 (2000), 443–452. | MR

[19] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. Jour. Theoret. Phys. 39 (2000), 231–237. | DOI | MR

[20] Riečanová, Z.: Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 3, 525–532. | MR | Zbl

[21] Riečanová, Z.: Smearings of states defined on sharp elements onto effect algebras. Internat. J. Theoret. Phys. 41 (2002), 1511–1524. | DOI | MR | Zbl

[22] Riečanová, Z.: Distributive atomic effect algebras. Demonstratio Math. 36 (2003), 247–259. | MR | Zbl

[23] Riečanová, Z.: Subdirect decompositions of lattice effect algebras. Internat. J. Theoret. Phys. 42 (2003), 1415–1423. | DOI | MR | Zbl

[24] Riečanová, Z.: Pseudocomplemented lattice effect algebras and existence of states. Inform. Sci. 179 (2009) 529–534. | DOI | MR | Zbl

[25] Riečanová, Z.: Archimedean atomic lattice effect algebras with complete lattice of sharp elements. SIGMA 6 (2010), 001, 8 pages. | MR | Zbl

[26] Schmidt, J.: Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge. Arch. d. Math. 7 (1956), 241–249. | DOI | MR