Keywords: non-classical logics; orthomodular lattices; effect algebras; $MV$-algebras; MacNeille completions
@article{KYB_2011_47_1_a7,
author = {Rie\v{c}anov\'a, Zdenka},
title = {Lattice effect algebras densely embeddable into complete ones},
journal = {Kybernetika},
pages = {100--109},
year = {2011},
volume = {47},
number = {1},
mrnumber = {2807867},
zbl = {1229.03056},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a7/}
}
Riečanová, Zdenka. Lattice effect algebras densely embeddable into complete ones. Kybernetika, Tome 47 (2011) no. 1, pp. 100-109. http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a7/
[1] Chang, C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958). 467–490. | DOI | MR | Zbl
[2] Chovanec, F., Kôpka, F.: Difference posets in the quantum structures background. Internat. J. Theoret. Phys. 39 (2000), 571–583. | DOI | MR
[3] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. | MR
[4] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra. Order 12 (1995), 91–106. | DOI | MR
[5] Gudder, S. P.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30. | MR | Zbl
[6] Gudder, S. P.: S-dominating effect algebras. Internat. J. Theoret. Phys. 37 (1998), 915–923. | DOI | MR | Zbl
[7] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.
[8] Kalina, M.: On central atoms of Archimedean atomic lattice effect algebras. Kybernetika 46 (2010), 609–620. | MR | Zbl
[9] Kalina, M., Olejček, V., Paseka, J., Riečanová, Z.: Sharply dominating $MV$-effect algebras. To appear in: Internat. J. Theoret. Phys. DOI: 10.1007/s10773-010-0338-x.
[10] Kalmbach, G.: Orthomodular Lattices. Kluwer Academic Publ. Dordrecht 1998.
[11] Kôpka, F.: Compatibility in D-posets. Internat. J. Theoret. Phys. 34 (1995), 1525–1531. | DOI | MR
[12] Mosná, K.: Atomic lattice effect algebras and their sub-lattice effect algebras. J. Electr. Engrg. 58 (2007), 7/s, 3–6.
[13] Paseka, J., Riečanová, Z.: Isomorphism theorems on generalized effect algebras based on atoms. Inform. Sci. 179 (2009), 521–528. | DOI | MR | Zbl
[14] Paseka, J., Riečanová, Z.: The inheritance of BDE-property in sharply dominating lattice effect algebras and $(o)$-continuous states. To appear in: Soft Comput. DOI: 10.1007/s00500-010-0561-7.
[15] Riečanová, Z.: Compatibility and central elements in effect algebras. Tatra Mountains Math. Publ. 16 (1999), 151–158. | MR
[16] Riečanová, Z.: MacNeille completions of D-posets and effect algebras. Internat. J. Theoret. Phys. 39 (2000), 859–869. | DOI | MR
[17] Riečanová, Z.: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theoret. Phys. 38 (1999), 3209–3220. | DOI | MR
[18] Riečanová, Z.: Archimedean and block-finite lattice effect algebras. Demonstratio Math. 33 (2000), 443–452. | MR
[19] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. Jour. Theoret. Phys. 39 (2000), 231–237. | DOI | MR
[20] Riečanová, Z.: Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 3, 525–532. | MR | Zbl
[21] Riečanová, Z.: Smearings of states defined on sharp elements onto effect algebras. Internat. J. Theoret. Phys. 41 (2002), 1511–1524. | DOI | MR | Zbl
[22] Riečanová, Z.: Distributive atomic effect algebras. Demonstratio Math. 36 (2003), 247–259. | MR | Zbl
[23] Riečanová, Z.: Subdirect decompositions of lattice effect algebras. Internat. J. Theoret. Phys. 42 (2003), 1415–1423. | DOI | MR | Zbl
[24] Riečanová, Z.: Pseudocomplemented lattice effect algebras and existence of states. Inform. Sci. 179 (2009) 529–534. | DOI | MR | Zbl
[25] Riečanová, Z.: Archimedean atomic lattice effect algebras with complete lattice of sharp elements. SIGMA 6 (2010), 001, 8 pages. | MR | Zbl
[26] Schmidt, J.: Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge. Arch. d. Math. 7 (1956), 241–249. | DOI | MR