Associative $n$-dimensional copulas
Kybernetika, Tome 47 (2011) no. 1, pp. 93-99 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The associativity of $n$-dimensional copulas in the sense of Post is studied. These copulas are shown to be just $n$-ary extensions of associative 2-dimensional copulas with special constraints, thus they solve an open problem of R. Mesiar posed during the International Conference FSTA 2010 in Liptovský Ján, Slovakia.
The associativity of $n$-dimensional copulas in the sense of Post is studied. These copulas are shown to be just $n$-ary extensions of associative 2-dimensional copulas with special constraints, thus they solve an open problem of R. Mesiar posed during the International Conference FSTA 2010 in Liptovský Ján, Slovakia.
Classification : 03E72
Keywords: Archimedean copula; associativity in the sense of Post; $n$-dimensional copula
@article{KYB_2011_47_1_a6,
     author = {Stup\v{n}anov\'a, Andrea and Koles\'arov\'a, Anna},
     title = {Associative $n$-dimensional copulas},
     journal = {Kybernetika},
     pages = {93--99},
     year = {2011},
     volume = {47},
     number = {1},
     mrnumber = {2807866},
     zbl = {1225.03071},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a6/}
}
TY  - JOUR
AU  - Stupňanová, Andrea
AU  - Kolesárová, Anna
TI  - Associative $n$-dimensional copulas
JO  - Kybernetika
PY  - 2011
SP  - 93
EP  - 99
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a6/
LA  - en
ID  - KYB_2011_47_1_a6
ER  - 
%0 Journal Article
%A Stupňanová, Andrea
%A Kolesárová, Anna
%T Associative $n$-dimensional copulas
%J Kybernetika
%D 2011
%P 93-99
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a6/
%G en
%F KYB_2011_47_1_a6
Stupňanová, Andrea; Kolesárová, Anna. Associative $n$-dimensional copulas. Kybernetika, Tome 47 (2011) no. 1, pp. 93-99. http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a6/

[1] Couceiro, M.: On two generalizations of associativity. In: Abstracts of FSTA 2010 (E. P. Klement et. al., eds.), Liptovský Ján 2010, p. 47.

[2] Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms. Internat. J. Uncertainty, Fuzziness Knowledge-Based Systems 5 (1997), 411–427. | DOI | MR

[3] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge 2009. | MR | Zbl

[4] Joe, H.: Multivariable Models and Dependence Concepts. Chapman & Hall, London 1997. | MR

[5] Klement, E.-P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dortrecht 2000. | MR | Zbl

[6] Ling, C. H.: Representation of associative functions. Publicationes Mathematicae Debrecen 12 (1965), 189–212. | MR

[7] McNeil, A.-J., Nešlehová, J.: Multivariate Archimedean copulas, $d$-monotone functions and $L_1$-norm symmetric distributions. Annals Statist. 37 (2009), 3059–3097. | DOI | MR

[8] Mesiar, R., Sarkoci, P.: Open problems posed at the 10th International Conference on Fuzzy Set Theory and Appl. (FSTA 2010), Liptovský Ján. Kybernetika 46 (2010), 585–598. | MR

[9] Mesiar, R., Sempi, C.: Ordinal sums and idempotents of copulas. Aequationes Math. 79 (2010), 1–2, 39–52. | DOI | MR | Zbl

[10] Moynihan, R.: Infinite $\tau _T$ products of distribution functions. J. Austral. Math. Soc. Ser. A 26 (1978), 227–240. | DOI | MR

[11] Nelsen, R.-B.: An Introduction to Copulas. Second edition. Springer Science and Business Media, New York 2006. | MR | Zbl

[12] Post, E.-L.: Polyadic groups. Trans. Amer. Math. Soc. 48 (1940), 208–350. | DOI | MR | Zbl

[13] Sklar, A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231. | MR