Arithmetics in numeration systems with negative quadratic base
Kybernetika, Tome 47 (2011) no. 1, pp. 74-92 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider positional numeration system with negative base $-\beta$, as introduced by Ito and Sadahiro. In particular, we focus on arithmetical properties of such systems when $\beta$ is a quadratic Pisot number. We study a class of roots $\beta>1$ of polynomials $x^2-mx-n$, $m\geq n\geq 1$, and show that in this case the set ${\rm Fin}(-\beta)$ of finite $(-\beta)$-expansions is closed under addition, although it is not closed under subtraction. A particular example is $\beta=\tau=\frac12(1+\sqrt5)$, the golden ratio. For such $\beta$, we determine the exact bound on the number of fractional digits appearing in arithmetical operations. We also show that the set of $(-\tau)$-integers coincides on the positive half-line with the set of $(\tau^2)$-integers.
We consider positional numeration system with negative base $-\beta$, as introduced by Ito and Sadahiro. In particular, we focus on arithmetical properties of such systems when $\beta$ is a quadratic Pisot number. We study a class of roots $\beta>1$ of polynomials $x^2-mx-n$, $m\geq n\geq 1$, and show that in this case the set ${\rm Fin}(-\beta)$ of finite $(-\beta)$-expansions is closed under addition, although it is not closed under subtraction. A particular example is $\beta=\tau=\frac12(1+\sqrt5)$, the golden ratio. For such $\beta$, we determine the exact bound on the number of fractional digits appearing in arithmetical operations. We also show that the set of $(-\tau)$-integers coincides on the positive half-line with the set of $(\tau^2)$-integers.
Classification : 11K16, 68R15
Keywords: numeration systems; negative base; Pisot number
@article{KYB_2011_47_1_a5,
     author = {Mas\'akov\'a, Zuzana and V\'avra, Tom\'a\v{s}},
     title = {Arithmetics in numeration systems with negative quadratic base},
     journal = {Kybernetika},
     pages = {74--92},
     year = {2011},
     volume = {47},
     number = {1},
     mrnumber = {2807865},
     zbl = {1227.11033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a5/}
}
TY  - JOUR
AU  - Masáková, Zuzana
AU  - Vávra, Tomáš
TI  - Arithmetics in numeration systems with negative quadratic base
JO  - Kybernetika
PY  - 2011
SP  - 74
EP  - 92
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a5/
LA  - en
ID  - KYB_2011_47_1_a5
ER  - 
%0 Journal Article
%A Masáková, Zuzana
%A Vávra, Tomáš
%T Arithmetics in numeration systems with negative quadratic base
%J Kybernetika
%D 2011
%P 74-92
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a5/
%G en
%F KYB_2011_47_1_a5
Masáková, Zuzana; Vávra, Tomáš. Arithmetics in numeration systems with negative quadratic base. Kybernetika, Tome 47 (2011) no. 1, pp. 74-92. http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a5/

[1] Ambrož, P., Dombek, D., Masáková, Z., Pelantová, E.: Numbers with integer expansion in the numeration system with negative base. Preprint 2009. | MR

[2] Balková, L., Gazeau, J.-P., Pelantová, E.: Asymptotic behavior of beta-integers. Lett. Math. Phys. 84 (2008), 179–198. | DOI | MR | Zbl

[3] Bassino, F.: $\beta $-expansions for cubic Pisot numbers. In: 5th Latin American Theoretical Informatics Symposium (LATIN’02), Cancun 2002, Springer-Verlag, Lecture Notes in Comp. Sci. 2286 (2002), pp. 141–152. | MR | Zbl

[4] Bernat, J.: Arithmetics in $\beta $-numeration. Discr. Math. Theor. Comp. Sci. 9 (2007), 85–106. | MR | Zbl

[5] Burdík, Č., Frougny, Ch., Gazeau, J.-P., Krejcar, R.: Beta-integers as natural counting systems for quasicrystals. J. Phys. A: Math. Gen. 31 (1998), 6449–6472. | DOI | MR

[6] Fabre, S.: Substitutions et $\beta $-systèmes de numération. Theoret. Comput. Sci. 137 (1995), 219–236. | DOI | MR | Zbl

[7] Frougny, Ch.: On-line addition in real base. In: Proc. MFCS 1999, Lectures Notes in Comput. Sci. 1672 (1999), pp. 1–11. | MR | Zbl

[8] Frougny, Ch., Lai, A. C.: On negative bases. In: Proc. DLT 09, Lectures Notes in Comput. Sci. 5583 (2009), 252–263. | MR | Zbl

[9] Frougny, Ch., Solomyak, B.: Finite $\beta $-expansions. Ergodic Theory Dynamical Systems 12 (1994), 713–723. | MR

[10] Frougny, Ch., Surarerks, A.: On-line multiplication in real and complex base. In: Proc. IEEE Arith. 16, IEEE Computer Society Press 2003, pp. 212–219.

[11] Guimond, L. S., Masáková, Z., Pelantová, E.: Arithmetics of beta-expansions. Acta Arith. 112 (2004), 23–40. | DOI | Zbl

[12] Ito, S., Sadahiro, T.: $(-\beta )$-expansions of real numbers. Integers 9 (2009), 239–259. | MR

[13] Kalle, C., Steiner, W.: Beta-expansions, natural extensions and multiple tilings associated with Pisot units. To appear in Trans. Amer. Math. Soc. 2011. | MR

[14] Masáková, Z., Pelantová, E., Vávra, T.: Arithmetics in number systems with a negative base. Theor. Comp. Sci. 12 (2011), 835–845. | DOI | Zbl

[15] Mazenc, C.: On the Redundancy of Real Number Representation Systems. Research Report 93-16, Laboratoire de l’informatique du parallélisme.

[16] Parry, W.: On the $\beta $-expansions of real numbers. Acta Math. Acad. Sci. Hung. 11 (1960), 401–416. | DOI | MR | Zbl

[17] Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8 (1957), 477–493. | DOI | MR

[18] Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980), 269–278. | DOI | MR | Zbl

[19] Steiner, W.: On the structure of $(-\beta )$-integers. Preprint 2010. | MR

[20] Thurston, W. P.: Groups, tilings, and finite state automata. AMS Colloquium Lecture Notes, American Mathematical Society, Boulder 1989.