Keywords: orthomodular lattice; quantum logic; symmetric difference; Gödel's coding; Boolean algebra; free algebra
@article{KYB_2011_47_1_a4,
author = {Matou\v{s}ek, Milan and Pt\'ak, Pavel},
title = {Orthocomplemented difference lattices with few generators},
journal = {Kybernetika},
pages = {60--73},
year = {2011},
volume = {47},
number = {1},
mrnumber = {2807864},
zbl = {1221.06011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a4/}
}
Matoušek, Milan; Pták, Pavel. Orthocomplemented difference lattices with few generators. Kybernetika, Tome 47 (2011) no. 1, pp. 60-73. http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a4/
[1] Beran, L.: Orthomodular Lattices, Algebraic Approach. D. Reidel, Dordrecht, 1985. | MR | Zbl
[2] Bruns, G., Harding, J.: Algebraic aspects of orthomodular lattices. In: Current Research in Operational Quantum Logic (B. Coecke, D. Moore and A. Wilce, eds.), Kluwer Academic Publishers 2000, pp. 37–65. | MR | Zbl
[3] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Springer-Verlag, New York 1981. | MR | Zbl
[4] Chiara, M. L. Dalla, Giuntini, R., Greechie, R.: Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics. Kluwer Academic Publishers, Dordrecht, Boston, London 2004. | MR
[5] Dorfer, G., Dvurečenskij, A., Länger, H. M.: Symmetric difference in orthomodular lattices. Math. Slovaca 46 (1996), 435–444. | MR
[6] Dorfer, G.: Non-commutative symmetric differences in orthomodular lattices. Internat. J. Theoret. Phys. 44 (2005), 885–896. | DOI | MR
[7] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, and Ister Science, Bratislava 2000. | MR
[8] Godowski, R., Greechie, R. J.: Some equations related to states on orthomodular lattices. Demonstratio Math. XVII (1984), 1, 241–250. | MR | Zbl
[9] Greechie, R. J.: Orthomodular lattices admitting no states. J. Combinat. Theory 10 (1971), 119–132. | DOI | MR | Zbl
[10] Engesser, K., Gabbay, D.M., ed., D. Lehmann: Handbook of Quantum Logic and Quantum Structures. Elsevier 2007. | MR
[11] Havlík, F.: Ortokomplementární diferenční svazy (in Czech). (Mgr. Thesis, Department of Logic, Faculty of Arts, Charles University in Prague 2007).
[12] Kalmbach, G.: Orthomodular Lattices. Academic Press, London 1983. | MR | Zbl
[13] Matoušek, M.: Orthocomplemented lattices with a symmetric difference. Algebra Universalis 60 (2009), 185–215. | DOI | MR | Zbl
[14] Matoušek, M., Pták, P.: Orthocomplemented posets with a symmetric difference. Order 26 (2009), 1–21. | DOI | MR | Zbl
[15] Matoušek, M., Pták, P.: On identities in orthocomplemented difference lattices. Math. Slovaca 60 (2010), 5, 583–590. | DOI | MR | Zbl
[16] Matoušek, M., Pták, P.: Symmetric difference on orthomodular lattices and $Z_2$-valued states. Comment. Math. Univ. Carolin. 50 (2009), 4, 535–547. | MR | Zbl
[17] Navara, M., Pták, P.: Almost Boolean orthomodular posets. J. Pure Appl. Algebra 60 (1989), 105–111. | DOI | MR
[18] Park, E., Kim, M. M., Chung, J. Y.: A note on symmetric differences of orthomodular lattices. Commun. Korean Math. Soc. 18 (2003), 2, 207–214. | DOI | MR | Zbl
[19] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht, Boston, London 1991. | MR
[20] Watanabe, S.: Modified concepts of logic, probability and integration based on generalized continuous characteristic function. Inform. and Control 2 (1969), 1–21. | DOI | MR