On the compound Poisson-gamma distribution
Kybernetika, Tome 47 (2011) no. 1, pp. 15-37 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The compound Poisson-gamma variable is the sum of a random sample from a gamma distribution with sample size an independent Poisson random variable. It has received wide ranging applications. In this note, we give an account of its mathematical properties including estimation procedures by the methods of moments and maximum likelihood. Most of the properties given are hitherto unknown.
The compound Poisson-gamma variable is the sum of a random sample from a gamma distribution with sample size an independent Poisson random variable. It has received wide ranging applications. In this note, we give an account of its mathematical properties including estimation procedures by the methods of moments and maximum likelihood. Most of the properties given are hitherto unknown.
Classification : 62E15, 62E17, 62E20
Keywords: compound Poisson-gamma; estimation; expansions; moments
@article{KYB_2011_47_1_a1,
     author = {Withers, Christopher and Nadarajah, Saralees},
     title = {On the compound {Poisson-gamma} distribution},
     journal = {Kybernetika},
     pages = {15--37},
     year = {2011},
     volume = {47},
     number = {1},
     mrnumber = {2807861},
     zbl = {1209.62013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a1/}
}
TY  - JOUR
AU  - Withers, Christopher
AU  - Nadarajah, Saralees
TI  - On the compound Poisson-gamma distribution
JO  - Kybernetika
PY  - 2011
SP  - 15
EP  - 37
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a1/
LA  - en
ID  - KYB_2011_47_1_a1
ER  - 
%0 Journal Article
%A Withers, Christopher
%A Nadarajah, Saralees
%T On the compound Poisson-gamma distribution
%J Kybernetika
%D 2011
%P 15-37
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a1/
%G en
%F KYB_2011_47_1_a1
Withers, Christopher; Nadarajah, Saralees. On the compound Poisson-gamma distribution. Kybernetika, Tome 47 (2011) no. 1, pp. 15-37. http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a1/

[1] Buishand, T. A.: Stochastic Modelling of Daily Rainfall Sequences. Wageningen, Netherlands, Mededelingen Landbouwhogeschool 1977.

[2] Choo, L., Walker, S. G.: A new approach to investigating spatial variations of disease. J. Roy. Statist. Soc. A 171 (2008), 395–405. | DOI | MR

[3] Christensen, A., Melgaard, H., Iwersen, J.: Environmental monitoring based on a hierarchical Poisson-gamma model. J. Quality Technology 35 (2003), 275–285.

[4] Comtet, L.: Advanced Combinatorics. Reidel Publishing Company, Dordrecht 1974. | MR | Zbl

[5] Fisher, R. A., Cornish, E. A.: The percentile points of distributions having known cumulants. Technometrics 2 (1960), 209–225. | DOI | Zbl

[6] Fukasawa, T., Basawa, I. V.: Estimation for a class of generalized state-space time series models. Statist. Probab. Lett. 60 (2002), 459–473. | DOI | MR | Zbl

[7] Galue, L.: A generalized hyper Poisson-gamma distribution associated with the $H$-function. Hadronic J. 30 (2007), 63–79. | MR | Zbl

[8] Gradshteyn, I. S., Ryzhik, I. M.: Tables of Integrals, Series and Products. Fourth edition. Academic Press, New York 1965.

[9] Hadjicostas, P., Berry, S. M.: Improper and proper posteriors with improper priors in a Poisson-gamma hierarchical model. Test 8 (1999), 147–166. | DOI | MR | Zbl

[10] Henderson, R., Shimakura, S.: A serially correlated gamma frailty model for longitudinal count data. Biometrika 90 (2003), 355–366. | DOI | MR | Zbl

[11] Kendall, M., Stuart, A.: The Advanced Theory of Statistics. Volume 1. MacMillan, New York 1977. | MR | Zbl

[12] Cam, L. Le: A stochastic description of precipitation. In: Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability (J. Neyman, ed.), University of California Press, Berkeley 1961, volume 3, pp. 165–186. | MR | Zbl

[13] Nahmias, S., Demmy, W. S.: The logarithmic Poisson gamma-distribution – a model for leadtime demand. Naval Research Logistics 29 (1982), 667–677. | DOI | Zbl

[14] Ozturk, A.: On the study of a probability distribution for precipitation totals. J. Appl. Meteorology 20 (1981), 1499–1505. | DOI

[15] Revfeim, K. J. A.: Comments “On the study of a probability distribution for precipitation totals”. J. Appl. Meteology 21 (1982), 97–100.

[16] Revfeim, K. J. A.: A theoretically derived distribution for annual rainfall totals. Internat. J. Climatology 10 (1990), 647–650. | DOI

[17] Withers, C. S.: Asymptotic expansions for distributions and quantiles with power series cumulants. J. Roy. Statist. Soc. B 46 (1984), 389–396. | MR | Zbl

[18] Withers, C. S., Nadarajah, S.: Saddlepoint Expansions in Terms of Bell Polynomials. Technical Report, Applied Mathematics Group, Industrial Research Ltd., Lower Hutt, New Zealand 2010. Avaiable on-line at http://arxiv.org/

[19] Xia, N., Zhang, Z.-Z., Ying, Z.-L.: Convergence rate of the L-N estimator in Poisson-gamma models. Acta Math. Appl. Sinica 22 (2006), 639–654. | DOI | MR | Zbl