Keywords: compound Poisson-gamma; estimation; expansions; moments
@article{KYB_2011_47_1_a1,
author = {Withers, Christopher and Nadarajah, Saralees},
title = {On the compound {Poisson-gamma} distribution},
journal = {Kybernetika},
pages = {15--37},
year = {2011},
volume = {47},
number = {1},
mrnumber = {2807861},
zbl = {1209.62013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a1/}
}
Withers, Christopher; Nadarajah, Saralees. On the compound Poisson-gamma distribution. Kybernetika, Tome 47 (2011) no. 1, pp. 15-37. http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a1/
[1] Buishand, T. A.: Stochastic Modelling of Daily Rainfall Sequences. Wageningen, Netherlands, Mededelingen Landbouwhogeschool 1977.
[2] Choo, L., Walker, S. G.: A new approach to investigating spatial variations of disease. J. Roy. Statist. Soc. A 171 (2008), 395–405. | DOI | MR
[3] Christensen, A., Melgaard, H., Iwersen, J.: Environmental monitoring based on a hierarchical Poisson-gamma model. J. Quality Technology 35 (2003), 275–285.
[4] Comtet, L.: Advanced Combinatorics. Reidel Publishing Company, Dordrecht 1974. | MR | Zbl
[5] Fisher, R. A., Cornish, E. A.: The percentile points of distributions having known cumulants. Technometrics 2 (1960), 209–225. | DOI | Zbl
[6] Fukasawa, T., Basawa, I. V.: Estimation for a class of generalized state-space time series models. Statist. Probab. Lett. 60 (2002), 459–473. | DOI | MR | Zbl
[7] Galue, L.: A generalized hyper Poisson-gamma distribution associated with the $H$-function. Hadronic J. 30 (2007), 63–79. | MR | Zbl
[8] Gradshteyn, I. S., Ryzhik, I. M.: Tables of Integrals, Series and Products. Fourth edition. Academic Press, New York 1965.
[9] Hadjicostas, P., Berry, S. M.: Improper and proper posteriors with improper priors in a Poisson-gamma hierarchical model. Test 8 (1999), 147–166. | DOI | MR | Zbl
[10] Henderson, R., Shimakura, S.: A serially correlated gamma frailty model for longitudinal count data. Biometrika 90 (2003), 355–366. | DOI | MR | Zbl
[11] Kendall, M., Stuart, A.: The Advanced Theory of Statistics. Volume 1. MacMillan, New York 1977. | MR | Zbl
[12] Cam, L. Le: A stochastic description of precipitation. In: Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability (J. Neyman, ed.), University of California Press, Berkeley 1961, volume 3, pp. 165–186. | MR | Zbl
[13] Nahmias, S., Demmy, W. S.: The logarithmic Poisson gamma-distribution – a model for leadtime demand. Naval Research Logistics 29 (1982), 667–677. | DOI | Zbl
[14] Ozturk, A.: On the study of a probability distribution for precipitation totals. J. Appl. Meteorology 20 (1981), 1499–1505. | DOI
[15] Revfeim, K. J. A.: Comments “On the study of a probability distribution for precipitation totals”. J. Appl. Meteology 21 (1982), 97–100.
[16] Revfeim, K. J. A.: A theoretically derived distribution for annual rainfall totals. Internat. J. Climatology 10 (1990), 647–650. | DOI
[17] Withers, C. S.: Asymptotic expansions for distributions and quantiles with power series cumulants. J. Roy. Statist. Soc. B 46 (1984), 389–396. | MR | Zbl
[18] Withers, C. S., Nadarajah, S.: Saddlepoint Expansions in Terms of Bell Polynomials. Technical Report, Applied Mathematics Group, Industrial Research Ltd., Lower Hutt, New Zealand 2010. Avaiable on-line at http://arxiv.org/
[19] Xia, N., Zhang, Z.-Z., Ying, Z.-L.: Convergence rate of the L-N estimator in Poisson-gamma models. Acta Math. Appl. Sinica 22 (2006), 639–654. | DOI | MR | Zbl