Keywords: intertwining of Markov processes; birth and death process; averaged Markov process; first passage time; coupling; eigenvalues
@article{KYB_2011_47_1_a0,
author = {Swart, Jan M.},
title = {Intertwining of birth-and-death processes},
journal = {Kybernetika},
pages = {1--14},
year = {2011},
volume = {47},
number = {1},
mrnumber = {2807860},
zbl = {1221.60125},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a0/}
}
Swart, Jan M. Intertwining of birth-and-death processes. Kybernetika, Tome 47 (2011) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/KYB_2011_47_1_a0/
[1] Athreya, S. R., Swart, J. M.: Survival of contact processes on the hierarchical group. Probab. Theory Related Fields 147 (2010), 3, 529–563. | DOI | MR | Zbl
[2] Diaconis, P., Miclo, L.: On times to quasi-stationarity for birth and death processes. J. Theor. Probab. 22 (2009), 558–586. | DOI | MR | Zbl
[3] Fill, J. A.: Strong stationary duality for continuous-time Markov chains. I. Theory. J. Theor. Probab. 5 (1992), 1, 45–70. | DOI | MR | Zbl
[4] HASH(0x2434598). F. R. Gantmacher: The Theory of Matrices, Vol. 2. AMS, Providence 2000.
[5] Karlin, S., McGregor, J.: Coincidence properties of birth and death processes. Pac. J. Math. 9 (1959), 1109–1140. | DOI | MR | Zbl
[6] Miclo, L.: On absorbing times and Dirichlet eigenvalues. ESAIM Probab. Stat. 14 (2010), 117–150. | DOI | MR
[7] Rogers, L. C. G., Pitman, J. W.: Markov functions. Ann. Probab. 9 (1981), 4, 573–582. | MR | Zbl