Keywords: $(l)$-group; order convergence; regular measure; Brooks–Jewett theorem; Dieudonné theorem
@article{KYB_2010_46_6_a9,
author = {Boccuto, Antonio and Candeloro, Domenico},
title = {Some new results about {Brooks-Jewett} and {Dieudonn\'e-type} theorems in $(l)$-groups},
journal = {Kybernetika},
pages = {1049--1060},
year = {2010},
volume = {46},
number = {6},
mrnumber = {2797426},
zbl = {1210.28015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a9/}
}
Boccuto, Antonio; Candeloro, Domenico. Some new results about Brooks-Jewett and Dieudonné-type theorems in $(l)$-groups. Kybernetika, Tome 46 (2010) no. 6, pp. 1049-1060. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a9/
[1] Bernau, S. J.: Unique representation of Archimedean lattice group and normal Archimedean lattice rings. Proc. London Math. Soc. 15 (1965), 599–631. | MR
[2] Boccuto, A.: Dieudonné-type theorems for means with values in Riesz spaces. Tatra Mountains Math. Publ. 8 (1996), 29-42. | MR | Zbl
[3] Boccuto, A.: Integration in Riesz spaces with respect to $(D)$-convergence. Tatra Mountains Math. Publ. 10 (1997), 33–54. | MR | Zbl
[4] Boccuto, A.: Egorov property and weak $\sigma $-distributivity in Riesz spaces. Acta Math. (Nitra) 6 (2003), 61–66.
[5] Boccuto, A., Candeloro, D.: Dieudonné-type theorems for set functions with values in $(l)$-groups. Real Analysis Exchange 27 (2001/2002), 473–484. | MR
[6] Boccuto, A., Candeloro, D.: Uniform $(s)$-boundedness and convergence results for measures with values in complete $(l)$-groups. J. Math. Anal. Appl. 265 (2002), 170–194. | DOI | MR | Zbl
[7] Boccuto, A., Papanastassiou, N.: Schur and Nikodym convergence-type theorems in Riesz spaces with respect to the (r)-convergence. Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 55 (2007), 33–46. | MR | Zbl
[8] Brooks, J. K.: On a theorem of Dieudonné. Adv. Math. 36 (1980), 165–168. | DOI | MR | Zbl
[9] Brooks, J. K., Jewett, R. S.: On finitely additive vector measures. Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 1294–1298. | DOI | MR | Zbl
[10] Candeloro, D.: Sui teoremi di Vitali–Hahn–Saks, Dieudonné e Nikodým. Rend. Circ. Mat. Palermo, Ser. II 8 (1985), 439–445. | MR
[11] Candeloro, D., Letta, G.: Sui teoremi di Vitali–Hahn–Saks e di Dieudonné. Rend. Accad. Naz. Sci. Detta dei XL 9 (1985), 203–213. | MR
[12] Das, R., Papanastassiou, N.: Some types of convergence of sequences of real valued functions. Real Anal. Exch. 29 (2003/2004), 43–58. | MR
[13] Dieudonné, J.: Sur la convergence des suites de mesures de Radon. An. Acad. Brasil. Ci. 23 (1951), 21–38. | MR
[14] Dunford, N., Schwartz, J. T.: Linear Operators I. General Theory, Interscience, New York 1958. | MR | Zbl
[15] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces, I. North-Holland Publishing Co. 1971. | MR
[16] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Kluwer Academic Publishers, Ister Science, Bratislava 1997. | MR
[17] Swartz, C.: The Nikodým boundedness Theorem for lattice-valued measures. Arch. Math. 53 (1989), 390–393. | DOI | MR | Zbl
[18] Vulikh, B. Z.: Introduction to the theory of partially ordered spaces. Wolters – Noordhoff Sci. Publ., Groningen 1967. | MR | Zbl