Some new results about Brooks-Jewett and Dieudonné-type theorems in $(l)$-groups
Kybernetika, Tome 46 (2010) no. 6, pp. 1049-1060 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we present some new versions of Brooks-Jewett and Dieudonné-type theorems for $(l)$-group-valued measures.
In this paper we present some new versions of Brooks-Jewett and Dieudonné-type theorems for $(l)$-group-valued measures.
Classification : 28B05, 28B15
Keywords: $(l)$-group; order convergence; regular measure; Brooks–Jewett theorem; Dieudonné theorem
@article{KYB_2010_46_6_a9,
     author = {Boccuto, Antonio and Candeloro, Domenico},
     title = {Some new results about {Brooks-Jewett} and {Dieudonn\'e-type} theorems in $(l)$-groups},
     journal = {Kybernetika},
     pages = {1049--1060},
     year = {2010},
     volume = {46},
     number = {6},
     mrnumber = {2797426},
     zbl = {1210.28015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a9/}
}
TY  - JOUR
AU  - Boccuto, Antonio
AU  - Candeloro, Domenico
TI  - Some new results about Brooks-Jewett and Dieudonné-type theorems in $(l)$-groups
JO  - Kybernetika
PY  - 2010
SP  - 1049
EP  - 1060
VL  - 46
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a9/
LA  - en
ID  - KYB_2010_46_6_a9
ER  - 
%0 Journal Article
%A Boccuto, Antonio
%A Candeloro, Domenico
%T Some new results about Brooks-Jewett and Dieudonné-type theorems in $(l)$-groups
%J Kybernetika
%D 2010
%P 1049-1060
%V 46
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a9/
%G en
%F KYB_2010_46_6_a9
Boccuto, Antonio; Candeloro, Domenico. Some new results about Brooks-Jewett and Dieudonné-type theorems in $(l)$-groups. Kybernetika, Tome 46 (2010) no. 6, pp. 1049-1060. http://geodesic.mathdoc.fr/item/KYB_2010_46_6_a9/

[1] Bernau, S. J.: Unique representation of Archimedean lattice group and normal Archimedean lattice rings. Proc. London Math. Soc. 15 (1965), 599–631. | MR

[2] Boccuto, A.: Dieudonné-type theorems for means with values in Riesz spaces. Tatra Mountains Math. Publ. 8 (1996), 29-42. | MR | Zbl

[3] Boccuto, A.: Integration in Riesz spaces with respect to $(D)$-convergence. Tatra Mountains Math. Publ. 10 (1997), 33–54. | MR | Zbl

[4] Boccuto, A.: Egorov property and weak $\sigma $-distributivity in Riesz spaces. Acta Math. (Nitra) 6 (2003), 61–66.

[5] Boccuto, A., Candeloro, D.: Dieudonné-type theorems for set functions with values in $(l)$-groups. Real Analysis Exchange 27 (2001/2002), 473–484. | MR

[6] Boccuto, A., Candeloro, D.: Uniform $(s)$-boundedness and convergence results for measures with values in complete $(l)$-groups. J. Math. Anal. Appl. 265 (2002), 170–194. | DOI | MR | Zbl

[7] Boccuto, A., Papanastassiou, N.: Schur and Nikodym convergence-type theorems in Riesz spaces with respect to the (r)-convergence. Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 55 (2007), 33–46. | MR | Zbl

[8] Brooks, J. K.: On a theorem of Dieudonné. Adv. Math. 36 (1980), 165–168. | DOI | MR | Zbl

[9] Brooks, J. K., Jewett, R. S.: On finitely additive vector measures. Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 1294–1298. | DOI | MR | Zbl

[10] Candeloro, D.: Sui teoremi di Vitali–Hahn–Saks, Dieudonné e Nikodým. Rend. Circ. Mat. Palermo, Ser. II 8 (1985), 439–445. | MR

[11] Candeloro, D., Letta, G.: Sui teoremi di Vitali–Hahn–Saks e di Dieudonné. Rend. Accad. Naz. Sci. Detta dei XL 9 (1985), 203–213. | MR

[12] Das, R., Papanastassiou, N.: Some types of convergence of sequences of real valued functions. Real Anal. Exch. 29 (2003/2004), 43–58. | MR

[13] Dieudonné, J.: Sur la convergence des suites de mesures de Radon. An. Acad. Brasil. Ci. 23 (1951), 21–38. | MR

[14] Dunford, N., Schwartz, J.  T.: Linear Operators I. General Theory, Interscience, New York 1958. | MR | Zbl

[15] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces, I. North-Holland Publishing Co. 1971. | MR

[16] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Kluwer Academic Publishers, Ister Science, Bratislava 1997. | MR

[17] Swartz, C.: The Nikodým boundedness Theorem for lattice-valued measures. Arch. Math. 53 (1989), 390–393. | DOI | MR | Zbl

[18] Vulikh, B. Z.: Introduction to the theory of partially ordered spaces. Wolters – Noordhoff Sci. Publ., Groningen 1967. | MR | Zbl